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Notation

General

P(U) The probability of event U .

E(X) The expectation of probability variable X.

Var(X) The variance of probability variable X.

x ∼ p() x is drawn from density p(·).
w ∝ f(x) equals to cf(x), typically c = (

∫
f(x)dx)−1.

F (f) The Fourier transform of f .

(f ∗ g)(x) Convolution of f and g.

Tracking Model

X State space of tracking.

Y Observation space.

Xt, Zt Probability variables (over X ); object’s state at time t.

Yt Probability variable (over Y); observation signal at time t.

r(Yt = y|Xt = x) Observation density, where x ∈ X .

K(Xt = z|Xt−1 = x) Dynamics (x, z ∈ X );
∫

K(z|x)dz = 1.

M = (K, r) A tracking model defined by a dynamical and an observation model.

π(Xt = z|Xt−1 = x, Y0:t) The (global) importance function used in importance sampling.

qX,Y (Zt = z) The local importance function at z. The function also depends on the
latest observation and particle position.

pM(Xt|Y0:t) The posterior of Xt given all observations.

Particle Filtering

X
(i)
t , Z

(i)
t i-th particle at time t.

w
(i)
t The weight of the i-th particle at time t.

St = {(X(i)
t , w

(i)
t )}N

i=1 The particle representation at time t.

N Number of particles.

Neff Effective sample size.
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Abbreviations

CONDENSATION Conditional Density Propagation

iCONDENSATION Conditional Density Propagation with importance sampling

SIR Sequential Importance Resampling

N-IPS N-Interacting Particle System

AVM Auxiliary Variable Method

AVPF Auxiliary Variable Particle Filter

JPDAF Joint Probabilistic Data Association Filter

HS-SIR SIR with History Sampling

RB-HS-SIR Rao-Blackwellised SIR with History Sampling

SS-RB-HS-SIR Rao-Blackwellised Subspace SIR with History Sampling

LS-N-IPS Local Search N-Interacting Particle System

LLS Local Likelihood Sampling

LIS Local Importance Sampling
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Chapter 1

Introduction

1.1 Motivation

According to the legend “all this” started in the early 1960s when the Hungarian researcher,
Rudolf Kalman, visited the NASA Ames Research Center. He realized the applicability of
his ideas to the problem of trajectory estimation that came up in the Apollo program. His
algorithm [17, 32, 16] soon became the main object tracking principle for many coming
years. Applications were soon discovered by engineers in different areas, and the Kalman
filter became the standard method of choice in designing aircraft autopilots, dynamic po-
sitioning system of ships, radar tracking and satellite navigation systems.

In the trajectory estimation problem there is an observer equipped with some sensors
that gather information about the state of the object to be tracked. The sensor can really
be anything that provides relevant information on the object. A GPS sensor in navigation
and a height sensor in aircraft autopilots are natural choices. The aim that Kalman
settled is to use these sensory readings (also called measurements or observations) to the
greatest possible extent to give the best estimation of the object’s pose. The sensors are
assumed to supply noisy observations of the environment. A common suggestion is to
treat the sensor noise independent in time. The object’s state and the sensor readings
are connected through the observation model. Without any further information, the best
estimate of the object’s state should be calculated using only the last sensor readings from
the observation model. In particular the estimate would be independent of the previous
observations. Naturally, this could lead to zigzagging object trajectories, which contradicts
our expectations that objects move in a smooth manner. More reasonable trajectories can
be obtained by making this expectation part of the model by assuming a motion model.
As a result one gets smoother object trajectories. In summary, the object model has two
parts: the motion or dynamical model provides predictions for the object’s next state given
the previous state, while the sensor or observation model describes the relation between
the sensory readings and the object’s state. The filtering task is to give the best estimate of
the object’s state assuming that the observations comply with the assumed model. When
assuming probabilistic models and an initial distribution for the object’s state for the time

1



2 CHAPTER 1. INTRODUCTION

step before the first observation arrived, the solution is given by the posterior distribution
given the observations. The actual utility of the posterior is limited by the correctness of
the models. As an example assume that one receives a sequence of GPS sensory readings
with the task of estimating the trajectory of an object moving on the earth in a certain
geographical region. Clearly, a simple auto-regressive motion model will lead to estimated
trajectories which can be quite different from those obtained by assuming a model that
uses road maps. Similarly, different sensor models will certainly lead to different estimates.
In the case of GPS sensors, the model of the sensor noise becomes an issue as different
noise models lead to different estimates. Hence, one should never forget that the estimates
depend not only on the observations, but also the models assumed.

It is reasonable to assume that our brain uses both observation and motion models.
As an example, imagine that you would like to catch a flying badminton shuttlecock. The
weather is windy and the sun shines into your eyes. How does your brain knows how to
move your hands? Due to air turbulence, it would certainly be hard to guess the exact
landing position just by watching the moment of throw, and closing your eyes after that. It
is harder to imagine, but sounds more obvious that only using your eyes and not your brain
would be inefficient for catching the ball. Now, during the play the sun suddenly comes out
from behind the clouds, shines into your eyes, reducing the quality of visual information
drastically. Our brain helps us through these situations by not only estimating the position
of the shuttlecock, but its speed and direction of motion as well, by effectively modeling
the motion of the objects tracked.

As we discussed earlier, the dynamical model is meant to describe how the object
generally moves from one time step to the next. This implies that the state should be
a sufficient statistic for the object’s future observations. In other words the state space
and the dynamical model should be designed in such a way that the dynamical model
is Markovian over the state space. One should prefer low dimensional state spaces, since
estimation in high dimensional spaces is harder. Achieving sufficient precision then requires
careful engineering. However often the preference to low dimensionality means that many
physical effects stay un-modeled (e.g. the spinning of the shuttlecock, or how the wind
blows in the above example). A particularly popular choice is to model the dynamics using
a low-order auto-regressive process.

Our main interest is to construct algorithms that track the object’s state well over
time. Kalman filters are designed to work with the so-called linear Gaussian models. For
such systems, the posterior is Gaussian whose parameters can be calculated in a recursive
(and thus cheap) manner. It is, in fact, this algorithm that is called the Kalman filter.
Unfortunately in several important trajectory estimation problems linear Gaussian mod-
els are inappropriate. The Extended Kalman Filter [36] and the more recent Unscented
Kalman Filter [35, 52] represents one line of research that are designed to work for non-
linear and/or non-Gaussian systems. Although these methods extend the scope of Kalman
filters considerably, they are fundamentally limited to problems were the posterior is uni-
modal. In several problems the available observations are often insufficient to rule out
multiple significantly different hypotheses, hence one needs a tool capable of representing
such multimodal posteriors. Particle filters are designed to handle such situations.
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The development of particle filters goes back to the early 50s, but their intensive study
started during the past 10 years. The original idea can be traced back to Metroplis and
Ulam [27]. An early summary is given by Rubinstein [11]. The rebirth in the past decade
was due to a review paper by Doucet [9] followed by the seminal papers of Kitagawa [18]
or Liu [21]. In computer vision an algorithm called CONDENSATION means the starting
point [14, 2].

The key idea in particle filtering is to use a discrete non-parametric representation
for the posterior,

∑N
i=1 w(i)δ(x − X(i)), where the weights wi are non-negative and sum

to one and δ is the Dirac-delta distribution function. This representation is hierarchical
in its nature, since the particle positions determine the importance weights as well.1 It
follows hence then that particle filtering algorithms should concentrate mainly on locating
the particles to valuable positions. However, most of the particle filtering algorithms
determine the particle positions using only the dynamical model and the prior (Bootstrap
Filter), or only the most recent observation (likelihood sampling, SIR with observation
based importance function). The questions investigated in this Thesis are:

a) What is the best way to let the dynamical model influence the particle locations in
SIR when the proposal function depends only on the observation?

b) How to let the latest observation influence the dynamical model based state prediction
in the Bootstrap Filter?

In this Thesis the sensor observing the environment will be a video camera. The obser-
vation signal is then the image frame. Problems with this setup are called visual tracking
problems. There are several specialties of this type of tracking problems. An image as a
measurement signal of the environment is a complicated one. Extracting position informa-
tion of objects from images is usually a challenging image processing task. Furthermore
since the complicated rules of camera optics and image projection, the object’s motion
model is usually kept very simple. We will assume that evaluation of the observation like-
lihood has the highest computational cost. This is why we will try to keep the number of
observation density evaluations low.

An important reason why particle filtering is particularly appealing in visual tracking
lies in the fact that the the images has to be processed only in the neighborhood of the
predicted particle locations. This can be a great advantage compared to other image
processing based tracking algorithms, when all the image frames has to be fully scanned
for the search of objects. As a result, using particle filtering not only leads to better
trajectory estimates, but also a faster algorithms.

At the same time observations coming from image-processing steps are usually more
reliable than the state predictions arising from the dynamical model. As a result the
observation likelihood function becomes ‘peaky’ (comparing to the prediction density) or

1More exactly, the particle positions determine the expected value of the weights, but in most of the
algorithms the weights are fully determined by the particle positions and hence the weights are equal to
the above mentioned expected value. An exception besides some of the algorithm introduced in this Thesis
is the Auxiliary Variable Method [31], where only the expected value of the weights are determined.
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concentrated around its modes (the modes correspond to the states that are locally most
likely to ‘cause’ the past observations). If the position of a particle is not sufficiently close
to one of these modes then the corresponding weight will bring in little information on the
estimate of the posterior. As an analogue to Bellman’s curse of dimensionality, we shall call
this problem, particularly eminent in visual tracking, the “curse of reliable observations”.

1.2 The Filtering Problem

In this section we give a formal description of the filtering problem. From a mathemat-
ical viewpoint the problem is to estimate the state of a discrete time, partially observed
stochastic system evolving in time. In this Thesis the dynamical model will be defined by
a kernel function

K(xt|xt−1)

which gives the probability density of the object’s state xt ∈ X at time t given the object’s
state xt−1 ∈ X at time t − 1. If one has a density of the object’s state at time t − 1, say
pt−1(xt−1), then the state-density for the next time step can be given as

p̂t(xt) =

∫
K(xt|xt−1)pt−1(xt−1)dxt−1.

At each time step an observation signal is received from the sensors that depends on the
object’s current state only. Let us denote the observation signal at the t-th time step by
Yt ∈ Y , where Y is the observation space. The choice of the observation space mainly
depends on the sensors observing the system to be tracked. For example, in the case of
a satellite navigation system with a GPS it includes the latitude, altitude and longitude.
In the case of visual tracking it is the observed image frame. The observation model is
required to give a distribution of the observation signal given the object’s state. In this
Thesis the observation density will be denoted by r(yt|xt). It is by assumption that this
density is only a function of xt. Hence if one has a density of the object’s state at time xt

denoted by p̂t(xt) then the density for the observation at the corresponding time step is:

r̂t(yt) =

∫
p̂t(xt)r(yt|xt)d(xt).

Another way of viewing this model is to say that at time t the new state is assumed to
be sampled from K(·|Xt−1), while the new observation signal Yt is sampled from r(.|Xt).
Such models are called Hidden Markov Models [3].

In the literature it is a common practice to denote both the dynamical kernel and the
observation density by p and leave it only to the arguments to define the function under
consideration. A common further overloading of the symbol p is to use it to denote the
prediction and/or posterior densities. The reason we make an effort to avoid this is to
make it clear that we work with models of the motion and observation, which do need to
match “reality”. Whenever appropriate a sub-index M = (K, r) referring to the model
will be used to signify when a density depends on the assumed model.
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The tracking problem is to compute the posterior density:

pM(Xt|Y0:t),

where we have used the convention Y0:t = Y0, . . . , Yt. By definition the posterior describes
the density of the object’s state given all available observations. When the model under
consideration is unimportant we will omit the index M .

1.3 Example Tracking Problems

In this section we introduce some vision-based tracking problems to motivate the further
developments. These problems will serve as testbeds in the rest of the Thesis.

1.3.1 Contour Tracking

The problem is to track an object contour on a video frame. For simplicity the dynamical
model assumes that the shape of the object’s contour changes only slightly, except for its
size and rotation which are free parameters. Figure 1.1 shows some example frames of
a video sequence, while an example contour with its B-spline control points is shown in
Figure 1.2. We assume that the object does not disappear, and no similar objects enter
the scene. The object might however make sudden movements and the scene lighting
conditions might change.

State Space

The state space consists of the pose of the object to be tracked along with the previous
pose. This is because the motion model uses the speed of the object as well. More exactly
the motion model is a second order auto regressive model on the object’s pose.

A pose defines a contour mapped onto the camera plane (i.e., onto the image) and
observations will be defined in terms of contours and the observed images.

A contour is represented by a B-spline [43]. Let us consider the spline curve s : [0, L] →
R2 defined by its support points (which lie on the curve) qx = (qx

1 , . . . qx
n)T , qy = (qy

1 , . . . q
y
n)T ,

i.e: s(t) = ((A−1qx)T ϕ(t), (A−1qy)T ϕ(t)), where ϕ(t) = (ϕ1(t), ϕ2(t), . . . , ϕn(t))T are the
usual B-spline basis functions (cf. [2]) and s(i) = (qx

i , qy
i )

T . A is linear transformation
mapping control points to support points and depends only on ϕ.

Let q0 = ((qx
0 )T , (qy

0)
T ) ∈ Rk be a vector of support points defining the template contour

s0 = S(q0) ⊂ R2. If G is a group of similarity transformations of the 2D plane (R2) then
one can find a matrix W = WG,q0 such that T ∈ G iff for some z ∈ Rd, d ≥ 1, the support
vector q = Wz + q0 yields the spline curve Ts0, or

S(Wz + q0) = Ts0.

Here we use the convention that z = 0 corresponds to T = Id. Thus, if G represents the set
of admissible transformations of the contour then the set of admissible object configurations
will correspond to Rd.
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Figure 1.1: Frames of a contour tracking problem video together with the sample desired
results (white contours).

Figure 1.2: An example contour with its B-spline control points.
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Figure 1.3: An example contour with its B-spline control points and a measurement
line(black) used in the observation likelihood calculation.

We will use the group of Euclidean similarities of the plane. Thus in this Thesis d = 4
and

W =

(
1 0 qx

0 −qy
0

0 1 qy
0 qx

0

)
, (1.1)

where 0 = (0, 0, . . . , 0)T , 1 = (1, 1, . . . , 1)T are of the appropriate dimensions.

Observation

Assume that a contour (s) corresponding to some pose (z) is given. The following obser-
vation model is due to Blake and Isard [14]. They define the likelihood of the observed
image given a pose by assuming that the image is formed such that edge positions along
measurement lines perpendicular to the contour follow Gaussian-distribution and edge po-
sitions at different measurement lines are independent of each other. Figure 1.3 shows a
sample contour with a selected measurement line.

1.3.2 License Plate Tracking

In this problem tracking of Japanese license plates is considered. Japanese license plates
have a fixed geometrical layout, which is very helpful in constructing a reliable observation
model. Figure 1.4 shows some example frames of a video sequence. The cars appear on
one side of the image and disappear at the other end. The cars entering the scene must be
detected and tracked all the time when they are visible.

State Space

The license plate (LP) area can be represented by a parallelogram with two vertical lines
and a fixed aspect ratio. Hence the configuration of a LP is defined through four pa-
rameters. In the followings we will denote these by u, w, and θ, where u and w corre-
spond to the horizontal and vertical position of the center of the LP on the image, while
θ ∈ [0, π) × [0, +∞) determines the angle of the non-vertical side and the scale of the
parallelogram. The state space is twice the size of the pose-space, again assuming a second
order dynamics: x = (unow, wnow, θnow, uprev, wprev, θprev).
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Figure 1.4: Frames from a Japanese license plate tracking video.

Dynamical model

The dynamical model is a mixture of Gaussians. There is a Gaussian that is responsible
for representing new cars entering the scene. This Gaussian has a weight of 0.1. Otherwise
the state evolves according to a simple AR(2) model. The AR(2) is factored: the middle
of the license plate, the size, the orientation and the rate of the parallelogram sides all
develop independently of each other.

Strictly speaking, independence does not hold in practice, the choice of this model
stems from our desire to minimize the number of free parameters and hence to increase
the robustness of the model. The parameters of the AR models were selected by hand in
a manner so that the variance of the process noise is overestimated. This was also meant
to increase robustness against unexpected movements.

Observation model

In the followings we will refer to a configuration (or pose) as (u, w, θ). Now, we define the
observation model given a configuration. Japanese license plates enjoy a very restricted
geometrical structure, as shown in Figure 1.5: The three main character areas are always
positioned at the same place and areas between them remain free of edges. This gives the
basic idea of our observation model. The likelihood itself is expressed as the product of
three likelihood functions that correspond to three different qualities of the LP. The best
way to describe the way these individual likelihoods are computed is to introduce a number
of categories and pixel-sets.

Consider the categories and pixel sets listed in Table 1.1. For each specific area the
likelihood is determined so that it results in a big value if the image looks ‘right’ over that
given area. When checking if an image looks ‘right’ we look for the absence or presence of
edges and lines over the appropriate areas. For detecting edges we use the Sobel operators.
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Category Pixel set Sign in Figure.1.5

Area of horizontal edges P h,e(u, w, θ) solid line
Horizontal stripes free of edges and lines P h,fe(u, w, θ) dashed line
Area of vertical edges P v,e(u, w, θ) solid line
Vertical stripes free of edges and lines P v,fe(u, w, θ) dashed line
Area of small characters P sc(u, w, θ) dotted
Area of large characters P bc(u, w, θ) checked

Table 1.1: Categories of license plate parts and symbols denoting the corresponding pixel
sets.

Figure 1.5: A Japanese license plate (left) and its template model (right): The area of large
characters is checked, the area of small characters is dotted. The system of horizontal and
vertical edge and line-free stripes is marked by dashed lines, whilst stripes of horizontal
and vertical lines is marked by solid lines.
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The corresponding horizontal (vertical) edge images shall be denoted by ∇xI (resp. ∇yI).
For evaluating line features the image was convolved with 2D difference of Gaussians (DOG)
filters approximated by the difference of two 2D box-filters having different scales. Two
such filters are needed, one with a larger scale (for detecting lines on thick characters) and
one with a smaller one (to detect lines of thin characters). The corresponding processed
images will be denoted by GsI and GSI, corresponding to the smaller- and larger-scale
lines, respectively.

The likelihood that a given image y = I is generated by a license plate of configuration
(u, w, θ) is thus computed as

r(y|u, w, θ) = rh(y|u, w, θ) rv(y|u, w, θ) rc(y|u, w, θ),

where the likelihoods rh, rv and rc are defined through their logarithms as follows:

log rh(y|u, w, θ) ∝ 1

#P h,e(u, w, θ)

∑
p∈P h,e(u,w,θ)

|(∇xI)(p)| −

1

#P h,fe(u, w, θ)

∑
p∈P h,fe(u,w,θ)

|(GsI)(p)|+ |(GSI)(p)|

log rv(y|u, w, θ) ∝ 1

#P v,e(u, w, θ)

∑
p∈P v,e(u,w,θ)

|(∇yI)(p)| −

1

#P v,fe(u, w, θ)

∑
p∈P v,fe(u,w,θ)

|(GsI)(p)|+ |(GSI)(p)|

log rc(y|u, w, θ) ∝ 1

#P sc(u, w, θ)

∑
p∈P sc(u,w,θ)

|(GsI)(p)|+

1

#P bc(u, w, θ)

∑
p∈P bc(u,w,θ)

|(GSI)(p)|.

The symbol #P denotes the cardinality of the set P . These various sets have been
introduced in Table 1.1.

By inspecting a large number of images we have found that the proposed likelihood
function is successful at discriminating plates and clutter: it has a single dominant peak
at the location of the true plate or plates. Figure 1.6 shows a typical landscape of the
likelihood as a function of u and w. Certainly this observation model could be further
refined by e.g. learning coefficients for each of the terms.

1.3.3 Bearings Only Ship Tracking

In contrary to the previous problems, in this section we will examine a simulated example.
This implies that we know the object’s exact dynamical and observation model. The
problem is a standard one that has been considered previously by several authors [13, 31,
4, 1]. The aim is to track the (horizontal) motion of a ship, while observing only angles
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Figure 1.6: The observation likelihood (right) function for the frame shown (left). Note
that the highest peak has a pretty small support, i.e. the observation likelihood function
is sensitive to the precise positioning of the license plate. This is a desirable property if
the goal is to determine the license plate’s position with high accuracy. The scale and the
orientation are selected to match their corresponding true values.

to it. We assume that the coordinate system is fixed to the observer. The ship’s state is
assumed to follow a second order AR process, with its acceleration driven by white noise:

Xt+1 =


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 Xt +


1
2

0
1 0
0 1

2

0 1

 ξt,

where Xt, ξt ∈ R2, ξt1, ξt2 ∼ N (0, 1), and Xt1, Xt3 represent the ship’s respective vertical
and horizontal positions, whilst Xt2, Xt4 represent the ship’s vertical and horizontal veloci-
ties. The initial state is sampled from a 4-dimensional Gaussian with a diagonal covariance
matrix.

What makes this problem particularly challenging is that the observations depend on
the state only through the angle, θt = tan−1(Xt3/Xt1), at which the ship is observed. The
observation noise is defined by a “wrapped” Cauchy density:

r(y|θt) =
1

2π

1− ρ2

(1 + ρ2 − 2ρ cos(y − θt))
.

This density (when ρ is close to one) is thought to reflect well a sonar’s behavior: angle
measurements are typically very reliable, whilst possible outliers are well modeled by the
heavy tails of the wrapped Cauchy distribution.

The parameters of the model used in the experiments are as follows: ση = 0.001, ρ = 1−
0.0052, and the initial state is sampled from a Gaussian with means (−0.05, 0.001, 0.2,−0.055)
and with a diagonal covariance matrix with diagonal entries given by

0.001× (0.52, 0.0052, 0.32, 0.012).

Figure 1.7 gives an example of the ship’s motion and the observed angles.



12 CHAPTER 1. INTRODUCTION

Figure 1.7: An example of the ship’s motion in the bearings only tracking problem together
with some rays representing the observations.

1.4 Thesis Overview

Let us now give an overview of the Thesis: In the next Chapter we first derive the exact
solution to the filtering problem. Then we discuss the basic building blocks of particle
filtering. Issues and important concepts are discussed, including resampling, importance
sampling and the effective sample size.

The main motivation of this Thesis is to show how the observation model can be better
used in the particle localization stage of particle filtering. The obvious way of incorporating
information coming from the observation is importance sampling. However it is common
that the last observation does not hold information for all the components of the state space.
For instance observing only the pose of the object might bring no information in view about
the speed or the direction of motion. The straightforward importance sampling scheme
then might result in poor approximations, since the likelihood of most of the particles might
get very small as the history part of the new state is not associated with the observation
based innovation content. In Chapter 3 we propose a solution that overcomes the problem.
The proposed family of algorithms samples the particle’s history hence the algorithms are
called history-sampling based particle filters.

Chapter 4 describes a more complicated but an often more effective method to locate
the particles that uses both the observation and the dynamical model. They key idea lies
in a modification of the Bootstrap Filter, whereas the particles are re-allocated after they
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are predicted using the dynamical model. This step, that we call the position perturbation
step, is done by locally analyzing the observation likelihood around each predicted location
and let the particles be dragged by the local modes of the observation likelihood. One can
think of this idea as a particle localization procedure that uses the global behavior of
the dynamical model combined with the local characteristics of the observation model to
locate the particles. This combination is particularly appealing since in visual tracking
the dynamical model is less reliable, and hence it is able to give valuable particle location
regions only. In this sense the dynamical model gives good particle locations in a “low
frequency” manner. In contrary the much more reliable observation gives focus to spots of
good particle locations, providing them in a “high-frequency” way. It is shown that these
methods increase the efficiency of particle filtering in case of reliable observation models.
The text focuses on the theory of the algorithms, but experiments on the above tracking
problems are also given. Although the ideas are explained in a general framework, this
chapter is highly motivated by visual object tracking situations.

In the Appendix several related advanced particle filtering algorithms are discussed
using the notation of this Thesis. The reason that these algorithms are not detailed in the
main body, is to keep the body focused on the new ideas.
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Chapter 2

Particle Filtering Elements

2.1 The Bayesian Solution

The filtering problem formulated in Section 1.2 has an analytic solution that can be ob-
tained by applying Bayes theorem, the law of total probability and exploiting the following
independence assumptions:

(i) The observation signal given the last state is independent of the previous observation
signals:

pM(yt|xt, y0:t−1) = pM(yt|xt).

(ii) The state is independent of the previous observation signals, if the previous state is
given:

pM(xt|xt−1, y0:t−1) = pM(xt|xt−1).

Then the posterior can be calculated, up to a proportional factor, as follows:

pM(xt|Y0:t) =
pM(Yt|xt)pM(xt|Y0:t−1)

pM(yt|Y0:t−1)

∝ pM(Yt|xt)

∫
pM(xt|xt−1)pM(xt−1|Y0:t−1)dxt−1 (2.1)

= r(Yt|xt)

∫
K(xt|xt−1)pM(xt−1|Y0:t−1)dxt−1.

Note that this is a recursive equation for pM(xt|Y0:t). Thus, when the initial state density
p0(x0) is known, pM(xt|Y0:t) can be computed via (2.1).

Unfortunately, the exact solution cannot be computed except in a few special cases
such as the case of linear Gaussian models or finite Hidden Markov models (in the former
case the solution is given by the Kalman filter, while in the latter case it is given by the
Baum-Welsch equations). In practice the models are often more complicated. Therefore a
large body of current work in the filtering literature is devoted to finding the posterior in
an approximate manner.

15
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2.2 Introducing Particle Representations

As it was noted above, the exact solution of the filter evolution equation (2.1) is not
feasible in general. One approach to overcome this problem is to use sequential Monte-
Carlo methods to sample from the posterior. The key issue here is to construct a weighted
sample set that represents the posterior in a faithful manner. One approach is to target
unbiased representations:

Definition 2.2.1. A random variable X is said to be properly weighted by the function w
with respect to the density p and the integrable function r if for any integrable function h,

E[h(X)w(X)] = I(hrp),

where I(f)
∫

f(x) dx is the usual integral operator. Alternatively, we say that (X, w(X))
forms a properly weighted pair with respect to p, r.

A series of random draws and weights {(X(k), w(k))}k=1,...,N is said to be properly
weighted with respect to p and r if all members of the set are properly weighted with respect
to p and r.

If {(X(k), w(k))}k=1,...,N are independent properly weighted samples with respect to p
and r then by the law of large numbers the sample averages

JN(h,w) = (1/N)
N∑

j=k

h(X(k))w(X(k))

will converge to I(hrp) if it exists. Hence, in this sense, a properly weighted set with
respect to f and r can be thought of as representing the product r(·)p(·). In this context h
is an integrable test-function. Its form certainly affects the quality of the estimation, and
hence the speed of convergence of JN(h,w) to I(hrp).

Furthermore, if one is given a properly weighted sample-set (X
(i)
t , w

(i)
t ), i = 1, 2, . . . , N

from the posterior pM(Xt−1|Y0:t−1) then an unbiased sample from pM(Xt|Y0:t) can be gen-
erated by the following two-step method [9]:

1. Prediction: Draw X
(i)
t from K(Xt = ·|X(i)

t−1), i = 1, 2, . . . , N ,

2. Evaluation: w
(i)
t = ctw

(i)
t−1r(Yt|X(i)

t ), i = 1, 2, . . . , N .

Here the unknown proportional factor ct is inversely proportional the the probability of the
latest observation given the previous ones, i.e., ct = 1/pM(Yt|Y0:t−1). Note that ct depends
only on the observations and does not depend on the particles’ properties.

Elements of the sample (X
(i)
t ) are traditionally called particles and the filtering method

is called particle filtering [9].
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2.3 Importance Sampling

Importance sampling is an important Monte-Carlo estimation procedure. It suggests to
estimate µ = Ep(h(X)) by

µ̂ =
1

N

N∑
i=1

h(Xi)
p(Xi)
π(Xi)

,

where X1, . . . , XN are independent samples from a distribution π(·) satisfying that when-
ever p(x) > 0 then also π(x) > 0.

The choice of π certainly influences the efficiency of the sampling to a great extent. A
good choice of π is one that is close to |h(x)p(x)|. When π ∝ |hp| the variance becomes

zero, and h(Xi)p(Xi)
π(Xi)

= µ. If sampling from p(.) directly is difficult but generating from π

and computing the importance ratio w(X) = p(X)/π(X) are easy, then using importance
sampling might lead to an effective estimation procedure.

A special choice of π is p itself. In this case the importance sampling scheme is identical
to the simple Monte-Carlo integral estimation.

Another useful variation of this idea is called weighted importance sampling. In this
procedure we estimate µ by

µ =

∑N
i=1 h(Xi)w(Xi)∑N

i=1 w(Xi)
.

This estimate is only asymptotically unbiased. This is easy to see by considering only
one particle N = 1. The estimate becomes h(Xi) independently of p, which is obviously
biased in general. In contrary the simple importance sampling gives unbiased estimate
even for a single particle. However in other performance measures such as E [(µ− µ)2)
weighted importance sampling often outperforms importance sampling. Further note that
this estimation works if one knows p only proportionally.

2.4 Effective Sample Size

The asymptotic consistency of a Monte-Carlo procedure represents only a minimal require-
ment that does not tell anything about the quality of the estimates. One way to measure
the quality of a randomized estimate is to compute its variance: in our specific case one
goal can be to obtain a properly weighted set such that the variance of the sample average
JN(h,w) is minimized (or is small).

Actually, we are more interested in studying the weight-normalized averages

IN(h,w) =

∑N
j=1 h(X(j))w(X(k))∑N

j=1 w(X(j))
(2.2)

which, again under proper conditions, converge to the normalized value I(hrp)/I(rp) as
N →∞ with probability one. As mentioned before, in practise IN(h,w) is more preferred
then JN(h,w), since its variance is smaller. On the other hand it is true that IN(h,w) is
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biased for any finite N . Particle filters make use of these weight-normalized averages to
represent the empirical measure. In this way they do not have to estimate the normalization
constant ct, which is a significant advantage.

Obviously, the variance of the sample average depends on h. Certainly we are interested
in the case when h is not fixed. Liu [20] (based on [19]) shows that it is sensible to measure
efficiency by a quantity inversely proportional to the variance of w(X), provided that w is
such that E[w(X)] = 1. We will refer to this scheme as Liu’s ‘rule of thumb’. In turn this
leads to a measure of efficiency

Neff =
N

1 + V ar(w(X))
,

which is called the effective sample size. If Neff = N , i.e, all weights are equal, then
the optimal sampling strategy is implemented. In other words the particle locations are
sampled exactly from the product r(·)p(·).

Liu’s rule of thumb will serve as our starting point. In particular, since for any properly
weighted pair (X, w), E[w(X)] = I(rp) and Var[w(X)] = E[w2(X)]− E[w(X)]2 it follows
that minimizing Var[w(X)] is equivalent to minimizing E[w2(X)]. Therefore, it follows
that it is sufficient to compare unbiased algorithms on the basis of the second moment of
the weights they use, since it is the same as comparing Neff .

Note that if X is drawn from p and w is set to be equal to r, as in the case of the
sampling procedure underlying the two-step method of Section 2.2, then

E[w2(X)] = I(r2p). (2.3)

An empirical measure of the effective sample size follows from the fact that the estimate
of the variance can be given as

V ar(w(X)) =

∑N
i=1(w

(i))2

N
− 1.

Hence:

N̂eff =
N

E(w2)
=

1∑N
i=1(w

(i))2
.

2.5 Resampling

The serious problem with the two-step method of Section 2.2 is that given any finite
sample size the weights w

(i)
t will degenerate: in general all of them converge to 0 except

for one index, for which w
(i)
t will converge to 1. This means that the observation model

will have no effect on the sample trajectories, which hence becomes a simple random walk
with the dynamical kernel K. In order to prevent this degeneration, a resampling step
was introduced into the above procedure by Gordon et al. and Rubin [13, 34]. Given

a particle set
{
(X(k), w(k))

}N

i=1
the aim of resampling is to generate a new particle set
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{
(X̂(k), ŵ(k))

}N

i=1
with lower weight variance, most often equal weights. Since the only

input of this method is the original particle set, the new particle positions are simply
sampled from among the original ones. Certainly the new particle set should still be an
unbiased estimator of the distribution in question. This can be ensured by considering
random weights satisfying

E

 ∑
j:X̂(j)=X(j)

ŵ(j)

 = Nw(j)

We will mainly consider algorithms that generates equal weights, i.e: ŵ(j) = 1/N j =
1, . . . , N .

The simplest resampling algorithm called Multinomial resampling is shown in Figure
2.1.

For n = 1, 2, . . . , N

Sample Ni from the multinomial distribution Mult(N ; w(1), w(2), . . . , w(N)).

Let X̂(i) = X(Ni) and ŵ(i) = 1.

EndFor

Figure 2.1: The Multinomial Resampling. N is the number of particles and i = 1, 2, . . . , N
is a particle index.

It is easy to imagine that the resampling step made regularly solves the above mentioned
degeneracy problem of particle filters, by always keeping the majority of the samples in
valuable location. It is important to notice that resampling gave an important boost
to sequential Monte-Carlo methods, and made the two-step procedure of Section 2.2 a
practical algorithm [13]. However nothing comes for free. As it is shown in the next
section resampling increases sampling variance.

2.5.1 Degradation due to Resampling

The following statements and proofs are mainly the work of Móri Tamás (personal com-
munication).

Imagine we have N particles all of them with equal weight (1/N). Assume that not all
of the particles are unique, but we only have m ≤ N distinct ones. Let their respective
duplication numbers be N1, . . . Nm. Let us define the duplication weights of the m distinct
particles as W 0

1 = N1/N, W 0
2 = N2/N, . . . , W 0

m = Nm/N (
∑m

i=1 W 0
i = 1). Assume we

recursively resample the particle set with multinomial resamplings for a couple of times.
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Figure 2.2: The expected degradation time of resampling as a function of particle number.

Let Wi = (W i
1, W

i
2, . . . ,W

i
m)T be the duplication weights of the particles after the i-th

resampling. It is clear that NW i+1
j is drawn from an N -th order binomial distribution

with parameter W i
j , i.e:

P(NW i+1
j = k|Wi) =

(
N

k

)
(W i

j )
k(1−W i

j )
N−k

Let Tn be the time of reaching a completely degenerated particle set (meaning that
there is a single particle having all the weights), i.e.: TN = inf{k|

∑N
j=1 W k

j (1−W i
j ) = 0}.

In Appendix A.1 it is shown that ETN ≤ 2N log 2N .
In fact Monte-Carlo experiments suggests that ETN is even linear in N . Results of

Monte Carlo experiments when m = 2 are shown in Figure 2.2.
Overall this suggests that degradation of a constant particle set with repeated multi-

nomial resampling is very fast. Hence this procedure should be used with extra care. It
should also be clear that it is a good idea to decrease the variance of the resampling scheme.
Some popular low variance resampling methods are given in Appendix A. The paper [33]
is an excellent summary of this issue.

2.6 The Bootstrap Filter

The Bootstrap Filter, also known as CONDENSATION [14] in the visual tracking litera-
ture, is the simple combination of the two-step method of Section 2.2 and resampling. The
algorithm is shown in Figure 2.3. A visual representation is given in Figure 2.4.
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Initialize
[
(Z

(k)
0 , 1/N)

]N
k=1

from the prior p0(·).
For t = 1, 2, . . .

For k = 1, 2, . . . , N

Resample
[
(Z

(j)
t−1, w

(j)
t−1)
]N

j=1
to obtain a new sample[

(Z
(k)
t−1

′
, 1/N)

]N
j=1

.

Sample Z
(k)
t ∼ K(.|Z(k)

t−1

′
).

Let ŵ
(k)
t = r(yt|Z(k)

t ).

EndFor

Normalize weights using

w
(k)
t =

ŵ
(k)
t∑N

i=1 ŵ
(i)
t

EndFor

Figure 2.3: The Bootstrap Filter. N is the number of particles and i = 1, 2, . . . , N is a
particle index.
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Figure 2.4: Sampling in the Bootstrap Filter. Positions of the particles (represented by
white circles in the upper part) are drawn from the prediction density. The particles are
propagated through the observation likelihood density to produce a weighted sample. The
radii of the black discs are plotted in proportion to the size of the weight corresponding
to the respective particles. The lower subplot shows the product of the prediction and
observation. Ideally, the ‘particle cloud’ composed of the black discs should closely reflect
the shape of the posterior.



Chapter 3

Importance Sampling in Particle
Filtering

3.1 Sequential Importance Resampling (SIR)

Using importance sampling in particle filtering goes back to [34, 40]. For some rea-
son one wants to sample the proposed the next states from a so-called proposal density
π(Xt = ·|Xt−1, Yt) instead of K(Xt = ·|Xt−1). The only restriction on this density is that
π(xt|xt−1, Yt) > 0 whenever K(xt|xt−1) > 0.

The derivation of the algorithm is again simple:

p(Xt|y0:t) ∝ p(yt|Xt)

∫
π(Xt|xt−1, yt)

p(Xt|xt−1)

π(Xt|xt−1, yt)
p(xt−1|y0:t−1)dxt−1

The simplest importance sampling based particle filtering algorithm, the so called Sequen-
tial Importance Sampling/Resampling (SIR) algorithm, is shown in Figure 3.1.

Obviously, the choice of π effects the efficiency of the algorithm in a fundamental way.
As in the general case, the best is certainly if π is close to the posterior itself. Note
that the Bootstrap Filter itself is an importance sampling algorithm, with π(xt|xt−1, Yt) =
K(xt|xt−1), i.e: the proposal does not depend on the latest observation signal. On the
other hand in visual object tracking it is common to choose proposals that depend only on
the last observation, and not on the previous state, i.e, π(xt|xt−1, Yt) = π(xt|Yt). In these
cases the proposal distribution is computed via some rough and fast image processing steps
e.g: color blob detection or edge filtering, which proposes particle positions with possibly
high observation likelihoods.

In some cases the proposal is not well defined on all dimensions of the state space. This
happens, e.g., if the state space holds some historical information on the particles, or the
image processing involved in the proposal function is not defined on all the dimensions
of the object’s pose, e.g. the color blob detector is usually not defined in the rotation
component. In these cases the the proposed particle positions are not fully defined and
hence the algorithm described in Figure.3.1 gets badly degraded. In this chapter we will
discuss the particle filtering algorithms introduced in [48] that overcome these problems.

23
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Initialize
[
(Z

(k)
0 , 1/N)

]N
k=1

from the prior p0(·).
For t = 1, 2, . . .

Resample from
[
(X

(j)
t−1, w

(j)
t−1)
]N

j=1
if needed, to obtain

[
(X̂

(j)
t−1, ŵ

(j)
t−1)
]N

j=1
.

For k = 1, 2, . . . , N

Sample from the proposal

X
(k)
t ∼ π(.|X̂(k)

t−1, Yt).

Calculate the importance weight

w
(k)
t = ŵ

(k)
t−1r(Yt|X(k)

t )
K(X

(k)
t |X̂(k)

t−1)

π(X
(k)
t |X̂(k)

t−1, Yt)
.

EndFor

Normalize weights using

w
(j)
t =

w
(j)
t∑N

i=1 w
(i)
t

EndFor

Figure 3.1: The Sequential Importance Sampling/Resampling (SIR) algorithm.

3.2 SIR with History Sampling

3.2.1 Problem Setting

In this section we will assume that the proposal density and the dynamics have a special
form and that the cost of evaluating the likelihood function is high. Problems with this
characteristics commonly arise in vision based tracking as we shall see it later. For now,
let us consider our assumptions in more details.

Assumption 3.2.1. “Factored dynamical model” We shall assume that the state space X
is factored into two parts:

X = X1 ×X2 (3.1)

where X1 is of dimension n1 and X2 is of dimension n2 (n1 + n2 = n, n1, n2 ≥ 1). The
dynamical model is given by a stochastic kernel

K1(Xt,1 = ·|Xt−1)
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defining the distribution over the first subspace and a deterministic function f defining the
evolution in the second subspace, i.e:

Xt,2 = f(Xt−1).

We shall call Xt,2 the history part of the state consisting of the previous configurations,
whilst we call Xt,1 the innovation part of the state. As a particular example of a process
of this kind let us consider auto-regressive (AR) processes. Remember that in the case
of a k-dimensional order-p AR process the dynamics is given as follows: The state Xt is
factored into p parts: Xt = ((Zt)

T
0 , . . . , (Zt)

T
p−1)

T , where Xt ∈ Rkp and (Zt)j ∈ Rk. Now,
Xt+1 is given by

(Zt+1)0 =

p−1∑
j=0

Aj · (Zt)j + et+1, and

(Zt+1)j+1 = (Zt)j, j = 0, . . . , p− 2. (3.2)

Here A0, . . . , Ap−1 ∈ Rk×k are parameters of the process, and e0, e1, . . . is a series of in-
dependent, identically distributed zero-mean k-dimensional Gaussian random variables.
The dynamics can be transformed into the form of Assumption 3.2.1 by defining n1 = k,
n2 = k(p− 1), Xt,1 = (Zt)0 and Xt,2 = ((Zt)

T
1 , . . . , (Zt)

T
p−1)

T .
In visual tracking second order dynamical models are the most common choice. In

these cases the pose of the object can be considered as the innovation component of the
state space, while the remaining part describing the velocity is the history component.

Assumption 3.2.2. “Restricted proposal” According to this assumption, the proposal π
depends only on the last observation signal and is defined only for the innovation component
of the state. Therefore in what follows we shall write π in the form π(Xt,1|Yt).

In order to simplify the exposition we shall further assume the following:

Assumption 3.2.3. “The observation density depends only on Xt,1, the innovation part
of the state.” According to this assumption one can write r(Yt|Xt) = r(Yt|Xt,1).

Assumptions 3.2.1, 3.2.2, 3.2.3 are often satisfied when particle filters are used in visual
tracking. First, the dynamics of the object to be tracked is often represented by some AR
process (satisfying Assumption 3.2.1). One example when the other two assumptions are
also valid is when a color blob detector is used as a proposal density for contour tracking(e.g.
see [15]). Note that in the case of visual tracking, according to Assumption 3.2.2 the states
proposed by π will depend only on information derived using the images (a “bottom up”
approach).

Under Assumptions 3.2.1, 3.2.2, 3.2.3 algorithm SIR takes the form presented in Figure
3.2. In what follows we shall call this algorithm “Basic-SIR”. It is clear that the particle
set X

(i)
t updated using Basic-SIR gives an unbiased estimate of the posterior.1

1By unbiased estimate we mean asymptotically unbiased. For finite sample sizes the estimate given by
particle filtering algorithms is biased.
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Unfortunately, Basic-SIR can be very inefficient. It may require a large number of
particles to achieve even a modest precision. This is because many weights can get pretty
small at the same time, since the innovation X

(i)
t,1 that will be associated with particle

i at time t is sampled independently of the state (X
(i)
t−1) associated with that particle.

Therefore, with high probability, the value of K1(X̂
(i)
t |X(i)

t−1) will be small when e.g. the

density K1(X
(i)
t |X(i)

t−1) is concentrated to a small portion of the state space. This happens
e.g. when the variance of the system noise K1 (cf. Assumption 3.2.1) is small. This problem
is illustrated in Figure 3.3. In this example the resulting particle set failed to represent
both peaks of the posterior density due to the random association of innovations and
histories. A common method to overcome this shortcoming is to increase the variance of
the observation model. Hence we will seek more principled solutions that have potential of
achieving better quality at the price of some additional work. Note that the computational
example used by Isard and Blake to illustrate their ICondensation algorithm [15] satisfies
all of our assumptions and is hence subject to problems described above.

The idea of the algorithms we consider in the followings is to ensure that for each particle
the history component of the particle will match the innovation component sampled from
the proposal. We achieve this by drawing an appropriate history for each innovation
component.

3.2.2 SIR with History Sampling

The main loop of our first algorithm, called HS-SIR (SIR with History Sampling), is shown
in Figure 3.4.

In order to understand this algorithm, let us introduce the auxiliary variables (X
(i,j)
t , w

(i,j)
t )

such that (X
(i,j)
t−1 , w

(i,j)
t−1 ) = (X

(i)
t−1, w

(i)
t−1) and let a particle set at time t be defined by the

equations
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. (3.4)

The particle
(
X

(i,j)
t , w

(i,j)
t

)
associates the i-th history with the j-th innovation. Here the

last equation follows by our assumptions on the observation and proposal densities. Now
assume that at time t− 1 the particle set (X

(i)
t−1, w

(i)
t−1)

N
i=1 represents an unbiased estimate

of the posterior p(Xt−1|Y0:t−1). Clearly, by the unbiasedness of the basic importance sam-

pling scheme, the particle set (X
(i,j)
t , w

(i,j)
t )N

i,j=1 will represent an unbiased estimate of the
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Figure 3.2: The Basic-SIR algorithm with our assumptions 3.2.1, 3.2.2, and 3.2.3.

posterior p(Xt|Y0:t). Now, if I
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Hence the probability that I
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t = k and J
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t = l both hold is proportional to the weight of

particle X
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t . Therefore sampling J

(i)
t and I

(i)
t+1 in HS-SIR takes the form of a standard

resampling step for the particle set (X
(i,j)
t , w

(i,j)
t ), and therefore the resulting particle set

of the HS-SIR algorithm (X
(i)
t , 1/N)N

i=1 will represent an unbiased estimate of the pos-
terior. Actually, these steps of the above algorithm can be considered as sampling from
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Figure 3.3: Illustration of the behavior of Basic-SIR. Consider a system where the state
Xt = (Xt,1, Xt,2) evolves according to a one-dimensional first-order AR-model. The first
two rows of the figure represent the particle set at time t−1, where the individual particles
are identified by the arrows connecting Xt−1,2 (green) and Xt−1,1 (red). The next row

shows the proposal density (orange) and the innovations (X
(i)
t,1) (blue) drawn from it. The

arrows from Xt−1,1 to Xt,1 show the association of the randomly sampled innovations and
the particles. In the lower part of the figure the new particle set is depicted after proper
weighting using the observation likelihood (pink) and the proposal (orange). Weights of
the individual particles are represented by the strength of the respective arrows.

(. . . , w
(·,·)
t , . . .) by means of factored sampling (see Appendix C): Drawing J

(i)
t+1 samples

the innovation components, whilst drawing I
(i)
t+1 samples the appropriate histories to be

associated with these components.

The advantage of HS-SIR over Basic-SIR should be clear by now: HS-SIR selects (by
random sampling) pairs of innovations and histories that have high probability of co-
occurring and thereby it will in general reduce the variance of the estimate of the posterior.
Note that this algorithm does resampling in every step, in contrary to other algorithms
where resampling is done only if the effective sample size drops too low. Although this is
disadvantageous the effect that history and the innovation part of the state space does not
decouple might be more important. Also note that the low variance resampling methods
discussed in Appendix A) can be adjusted easily to sample the indices J

(i)
t , and I

(i)
t .
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Figure 3.4: SIR with history sampling (HS-SIR).

3.2.3 Rao-Blackwellised SIR with History Sampling

Our next algorithm can be considered as a Rao-Blackwellised2 version of the previous
one, whereas sampling of the innovation component indexes (J

(i)
t ) is avoided - causing not

only a speed-up, but also a reduction in the variance of the estimate of the posterior.
The algorithm, that we call RB-HS-SIR (Rao-Blackwellised SIR with history sampling) is
shown in Figure 3.5, whilst Figure 3.6 illustrates the algorithm’s working principles.

Again, one expects that during the course of the algorithm the effective sample size will
stay high as the algorithm will prefer (on the average) highly probable history-innovation
associations.

2Assume that Y has some relevant information regarding the value of X. Rao-Blackwellisation suggests
to “integrate out” relevant information to decrease variance, i.e., Var(E(X|Y )) ≤ Var(X).
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In order to show the unbiasedness of the proposed method we evaluate
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Note that evaluating E[w
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t )|Y0:t] only would be inefficient, since the history
sampling step depends on all particles. This is why we included the sum over all particles
in the expectation.
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which finishes the proof of unbiasedness, since we have already seen in Section 3.2.2
that the particle set (X

(p,q)
t , w

(p,q)
t ) gives an unbiased representation of the posterior.

Note that RB-HS-SIR can be viewed as an auxiliary variable method (see Appendix
B), with the importance function:

π(Xt, k
(j)|Y0:t) = p(k(j)|X1,t, Y0:t)π(X1,t|Y0:t),

since k(j) defines X2,t deterministically, where k(j) is the history index.
Other variants of the algorithm can also be given. As an example let us mention

the variant when the particles’ innovation components are resampled, whilst their history
components are retained. This variant can be advantageous if the particle set bears more
information about the posterior than the proposal function.



3.2. SIR WITH HISTORY SAMPLING 31

3.2.4 Rao-Blackwellised Subspace SIR with History Sampling

Finally, let us mention the practical variant when the proposal function is further restricted
to a few selected components of the innovation. For example in visual tracking, often the
configuration is composed of translational and other components (e.g. rotation, scale) and
the proposal depends only on the translational component (this is the case e.g. when color
blob detection is used to define the proposal [15]). Formally, let us assume that the state
space is factored as follows:

X = X1 ×X2 = X1a ×X1b ×X2 (3.8)

where we assume that the proposal is only defined on X1a. We also assume that the
dynamics can be factored as

K1(Xt,1|Xt−1) = K1(Xt,1a, Xt,1b|Xt−1) = K1b(Xt,1b|Xt,1a, Xt−1)K1a(Xt,1a|Xt−1),

where we can sample from K1b(Xt,1b = ·|Xt,1a, Xt−1) and we can evaluate K1a(Xt,1a|Xt−1).
For these assumptions we propose a variant of RB-HS-SIR that we shall call RB-SS-HS-
SIR (Rao-Blackwellised subspace SIR with history sampling). The algorithm is given in
Figure 3.7.

The unbiasedness of the algorithm is straightforward. Note however, that sampling
from K1b(Xt,1b|Xt,1a, Xt−1) is not necessarily straightforward. Two exceptions are when
the system noise is Gaussian (in this case K1b(Xt,1b|Xt,1a, Xt−1) will still be Gaussian) and
when Xt,1b and Xt,1a are independent given Xt−1 and K1b(Xt,1b|Xt,1a, Xt−1) assumes a form
that is easy to sample from. In this latter case K1b(Xt,1b|Xt,1a, Xt−1) = K1b(Xt,1b|Xt−1)
and hence sampling from K1b(Xt,1b|Xt,1a, Xt−1) reduces to sampling from K1b(Xt,1b|Xt−1).

3.2.5 Experiments with Contour Tracking

In order to study the efficiency of the above algorithms, contour tracking experiments were
run. The task was to track the contour of an artificial object moving in front of a camera
in a normal office room environment (see Figure 3.8). The resolution of the images was set
to 240×180. Note that another object with color and shape identical to that of the object
to be tracked was lying on the table. As a consequence, the proposal keeps to draw “fake”
positions that need to be “filtered out”, making the job of blob-detection based trackers
non-trivial.

The Proposal

The output of a Gaussian color blob detector working on the original frames was used
as the basis of the proposal, just like in [15]. First, the output of the blob detector was
down-sampled to a resolution of 24 × 18 pixels. Then spatial coordinates were drawn
from the appropriately re-scaled output of the blob detector. These coordinates were
then mapped back to the original coordinate system of the images. The final coordinates
were obtained by applying a random perturbation to the coordinates calculated so far, by
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adding a random “fine-scale” random displacement vector drawn uniformly from the set
{−5,−4, . . . , 5} × {−5,−4, . . . , 5}.

Results

For the sake of comparisons Basic-SIR and RB-SS-HS-SIR were implemented and tried on a
number of image sequences. A typical tracking scenario using RB-SS-HS-SIR is presented
in Figure 3.8. In a sequence of 5 seconds of video sampled at 30Hz the configurations
of the object to be tracked were determined manually (this is the sequence shown on
Figure 3.8). Both algorithms were then tested on this sequence with 100 different random
seeds. Tracking error and the probability of losing the object to be tracked were measured
as a function of frame number. Equivalent running time experiments were considered on
an Intel Pentium IV 1.4GHz computer with 128MB RAM, i.e., the particle sizes were set
so that the running time of the algorithms were the same, and both resulted in acceptable
average tracking performance. No attempt was made to do any serious optimizations of
the algorithms. Respective particle set sizes are given in Table 3.1.

Algorithm # Particles
Basic-SIR 3000
RB-SS-HS-SIR 400

Table 3.1: Particle sizes used in the experiments.

Tracking errors of the algorithms averaged over the 100 runs are shown in Figure 3.9.
The error is computed as the distance (in pixels) in between the estimated position and the
true position of the object to be tracked. It should be clear from the figure that in terms
of the errors: RB-SS-HS-SIR is much better than Basic-SIR. The estimated probability of
losing the object as a function of frame indexes is shown in Figure 3.10. These estimates
are computed by counting the fraction of cases (of the 100 runs) when the output of the
tracker is outside of a certain large neighborhood of the object to be tracked (50 pixels).
In order to separate the effect of losing the object from problems with accuracy when the
object is tracked, when the object is lost at a certain point in time, the corresponding
distances are not included in the computation of the average error. Again, RB-SS-HS-SIR
performs better than Basic-SIR.

3.2.6 Discussion

These experiments indicate that under a wide range of conditions the proposed algorithms
do indeed overcome the inefficiency of Basic-SIR. Although the results are encouraging, one
should bear in mind that the new algorithms are computationally more expensive than the
original Basic-SIR algorithm: now one iteration requires O(CN) evaluations of the density
K1(Xt|Xt−1), where C is the number of distinct particles after resampling. If resampling
is not made in a time step, then the number of evaluations will be O(N2). Note that this
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is also the case for ICondensation [15]. Fortunately, however, the number of times the
observation density needs to be evaluated still scales linearly with the number of particles.
Therefore the history sampling algorithms can be cheaper than the Basic-SIR when the
cost of evaluating the observation density for a larger number of particles is higher than
the cost of evaluating the prediction density K(Xt|Xt−1) O(N) times. This is in fact quite
often the case when dealing with visual object tracking, as the image processing steps are
typically very expensive.

What remains is the discussion of the relation of the algorithms to ICondensation, the
algorithm introduced by Isard and Blake in [15]. At a first glance ICondensation looks
very similar to Basic-SIR. However, let us take a closer look at this algorithm. In Figure 1
of [15] in Step 2(a) the next state is sampled from the proposal as usual. However, impor-
tance weights are calculated with the formula used in RB-HS-SIR3 - possibly causing small
performance deterioration.4 Note that if all the particles are concentrated into a relatively
small portion of the state space then the importance weights calculated as in RB-HS-SIR
will be close to the “correct” ones. The same applies when the dynamics is close to the
uniform distribution. Also, note that ICondensation as described in [15] mixes several algo-
rithms: re-initialization, CONDENSATION and Basic-SIR with the modification described
above, therefore it is hard to analyze theoretically.

3The same problem appears when they describe the details of the algorithm in Section 4.2.
4Note that “incorrect” weights do not necessarily cause a problem, see e.g. Theorem 3.1 of [45].
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(l)
t−1K1(X

(i)
t,1 |X̂

(l)
t−1)

π(X
(i)
t,1 |Yt)

.

EndFor

Normalize weights using

w
(j)
t =

w
(j)
t∑N

i=1 w
(i)
t

EndFor

Figure 3.5: SIR with Rao-Blackwellised history sampling (RB-HS-SIR).
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Figure 3.6: Illustration of the behavior of the RB-HS-SIR. The figure is almost identical to
Figure 3.3, except that now the arrows from Xt−1,1 to Xt,1 show all the possible associations
of innovations and particles, and the strength of these arrows are proportional to the
weights that are used in associating particles histories and innovation components. It
should be clear that the posterior is grabbed better by this algorithm.
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Figure 3.7: Rao-Blackwellised subspace SIR with history sampling (RB-SS-HS-SIR).
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Figure 3.8: A typical tracking sequence with RB-SS-HS-SIR and 600-particles. Black con-
tours show configurations with high probabilities, while the white contour represents the
average configuration. Note that there is an object lying on the table that has the same
characteristics (e.g. is made of the same material of the same color) as the object to be
tracked, making the tracking task more difficult.



38 CHAPTER 3. IMPORTANCE SAMPLING IN PARTICLE FILTERING

Figure 3.9: Tracking error as a function of frame number.

Figure 3.10: Probability of losing the object.



Chapter 4

Local Perturbations in Particle
Filtering

4.1 Motivation

In visual tracking the vision engineer has a strong influence on how the observations are de-
rived from the image. By employing a rich set of features it is possible to construct reliable
observations, e.g. by combining the output of features working with different modalities
such as shape, color, texture, contours and intensity [30, 29, 8, 37, 14]. Unfortunately, the
performance of particle filters degrades seriously when the level of observation noise is low
and the number of particles is not sufficiently high (see Figure 4.1). In this chapter we
will consider methods to improve the performance of particle filters when the level of the
observation noise is low.

In the followings we will assume to work with reliable observations. In this case the ob-
servation likelihood function becomes ‘peaky’ or concentrated around its modes (the modes
correspond to the states that are locally most likely to ‘cause’ the past observations). If the
position of a particle is not sufficiently close to one of these modes then the corresponding
weight will bring in little information into the estimate of the posterior. If this happens for
most of the particles then the quality of the approximation to the posterior may become
seriously degraded. We call this problem the “curse of reliable observations”.

The curse of reliable observations is a well-known peculiarity of particle filters and many
proposals have been suggested to overcome it. The most generic of these is importance
sampling discussed earlier, where the algorithm designer can choose a proposal density that
may depend on both the most recent observation and the state to sample the particles’
new positions from. However usually the proposal just depends on the last observation,
which was also our assumption in Chapter 3. Choosing a proposal is often considered an
art: no generic designs can be found in the literature. Another particularly straightforward
way to overcome the curse is to increase the number of particles until it is ensured that a
sufficiently high number of particles will be close to the peaks of the observation likelihood
function. In high dimensional state spaces, this approach may require an enormous number

39
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Figure 4.1: Sampling with Bootstrap Filter: the case of peaky observation densities. Since
the particles’ positions do not match the dominant modes of the observation density the
representation becomes degraded.

of particles. In addition, in visual tracking it is the evaluation of the observation likelihood
that is the computationally most expensive step, as evaluating this likelihood requires
computations that involve image processing steps. Thus, a large number of particles is
highly undesirable as it can slow down the filtering process.

Since the inefficiency stems from the particles’ positions not being close enough to the
modes of the observation likelihood function, it is a natural idea to design algorithms
where the observation likelihood influences the particles’ positions. Indeed this is the idea
that we follow in this chapter. In all methods introduced here the particles’ positions are
generated in a two-stage sampling process, where one of the sampling steps uses information
of the observation likelihood density. In the algorithm studied first (called LS-N-IPS), a
local search is done on all predicted particle positions, thus introducing some bias in the
estimation procedure. Still the algorithm will be shown to outperforms its competitors by
a large margin, thanks to the reduced variance of the estimates it provides.

In the case of the Local Likelihood Sampling based particle filter (LLS), a localized
version of the observation likelihood function is used to adjust the particles’ positions that
are initially sampled from the prediction density pM(Xt = x|Y0:t−1), just like in case of the
Bootstrap Filter. Weights are calculated so that the process remains unbiased. In the case
of the Local Importance Sampling (LIS), the first sampling step remains the same, whilst
in the second step the observation likelihood is replaced by a user-chosen proposal density
function called local importance function that should be close to the localized observation
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likelihood. The weight update equations are modified so that unbiasedness is retained.
The motivation for this algorithm is that in some cases sampling from the exact likelihood
function’s localized version cannot be implemented efficiently. In such a case it might be
worthwhile to use a density whose shape resembles the localized likelihood, but which is
easier to sample from.

4.2 Literature Overview

Alternative proposals aiming to overcome the curse of reliable in observations include
the Auxiliary Variable Method (AVM) introduced by Pitt and Shephard [31]. AVM uses

a proposal density of the form π(Xt|X(1)
t−1, . . . , X

(N)
t−1 , Yt) =

∑N
k=1 r(Yt|X

(k)

t )K(Xt|X(k)
t−1),

where X
(k)

t is e.g. the expected next state for particle k. Sampling is implemented by first

doing a weighted resampling step (for details see Appendix C) using the weights r(Yt|X
(k)

t )
and then drawing the next states using the transition density kernel K. For exact details of
the AVM procedure see Appendix B. AVM can be more efficient than the Bootstrap Filter
when the process noise variance is low and the observation likelihood is not too peaky.
When the observation likelihood is peaky and the number of particles is not high enough

then resampling the particle set using {r(Yt|X
(k)

t )} might not be successful at picking the
particles that were likely to produce the observation. A similar problem occurs when the

prediction density is multi-modal and hence X
(k)

t is not a good candidate to predict the

likelihood p(Yt|X
(k)

t ). Also, when the prediction density has a large variance as compared
to the observation noise then even if the first stage is successful, sampling the particle’s
next state from K might yield to a set of particles that are spread out too much in the
state space.

Annealed sampling [8] and the work of Cham and Rehg [5] is closely related to LS-N-IPS,
however in [8] the search made after the prediction stage is clearly not local, which can cause
serious bias in the posterior, as the effect of dynamical model decreases. In [5] an interesting
approach is described. The density representation is piecewise Gaussian, and as a result
after the local search operator one estimates the covariance matrix, using perturbation
analysis (a time consuming step). Another disadvantage with this representation is that
the Bayes’ rule has to be applied to all pairs of Gaussians coming from the prediction,
observation representation. This also implies that if the feature space and the state space
does not coincide, then the algorithm cannot be used. In [5] a constant velocity model is
used (a first order model) to overcome this problem.

Another recent account is likelihood sampling considered e.g. in details in [6]. In
this approach it is the likelihood function p(Yt|·) that is used as the proposal, whilst
the prediction density is used to calculate the weights. Thus the success of this method
depends on whether the likelihood is a good predictor of the true state. For multi-modal
likelihoods (when aliasing effects are severe) a large number of particles can be generated
away from the likely next positions of the true state. These particles will get low weights
in the weighting process and thus will have no significant effect on the estimated posterior.
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Hence the effective sample size can be small in this case. Our methods overcome this
problem by first sampling from the prediction density and hence concentrating the sample
into the vicinity of the ‘correct’ peaks of the likelihood function.

Boosted particle filters (BOOPF) [28] are probably the closest to LLS/LIS filters in
their spirit. BOOPF is an instance of SIR. Its proposal can be written in the form:

π(Xt = ·|Xt−1, Yt) = α(X t, Yt) r(Yt|Xt = ·)g(X t −Xt = ·)
+
(
1− α(X t, Yt)

)
K(Xt = ·|Xt−1),

where X t is the expected next state given Xt−1, g is a rectangular window function and

α(x, y) =

{
A, if r0 < maxx′:d(x′,x)≤λ r(y|x′);
B, otherwise.

Here 0 < B � A < 1, and r0, λ are parameters to be chosen by the user. In effect, BOOPF
will sample the next state from the localized version of the observation likelihood when the
observation likelihood is sufficiently large in a neighborhood of the expected next state,
whilst in the other case the prediction density is used to sample the next state. Note that
the version of this algorithm presented in [28] uses heuristically derived approximations
to the observation likelihood and it is slightly more complicated than the one presented
here. In any case, this algorithm is a nice exception when the proposal depends on both
the dynamical prediction and on the most recent observation and that it is possible to
implement sampling in an efficient manner. However when the prediction density is multi-
modal or when it has a large variance then the expected value of the next state can be a
bad predictor of where the object might be in the next step. In such cases this algorithm
would practically perform identically to the naive sampling scheme of the Bootstrap Filter
and thus it would suffer from the curse of reliable observations. Our algorithms are capable
of coping with such difficult cases thanks to the two-stage sampling scheme.

4.3 The LS-N-IPS Algorithm

The “Local Search”-modified N-IPS1 algorithm (LS-N-IPS) was introduced in [44, 45, 47,
46]. The algorithm is shown in Figure 4.2.

The difference between LS-N-IPS and N-IPS (or Bootstrap Filter) is in the update of
the proposed states. LS-N-IPS uses a non-trivial local search operator, LSλ, to “refine”
the predictions drawn from the dynamical model, as shown visually in Figure 4.3. Note
that since we do not compensate for this local perturbation, we introduce some bias as
compared to the posterior predicted using the basic Bootstrap Filter.

The idea here is that a good local search operator, LSλ should satisfy r(y|LSλ(x, y)) ≥
r(y|x). The parameter λ > 0 defines the “search length”: LSλ is usually implemented as
a (local) search trying to maximize r(y|·) around x, in a neighborhood with size λ, e.g.

LSλ(x, y) = argmax{r(y|x̃) | ||x̃− x|| ≤ λ } (4.1)

1The name N-IPS comes from N-Interacting Particle System and was introduced in [7].
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Initialize
[
(X

(k)
0 , 1/N)

]N
k=1

from the prior p0(·).
For t = 1, 2, . . .

For k = 1, 2, . . . , N

Sample X̂
(k)
t ∼ K(Xt = ·|X(k)

t−1).

Search locally around X̂
(i)
t to get a new state : X

(k)
t = LSλ(X̂

(k)
t , Yt).

Calculate the importance weight ŵ
(k)
t = r(Yt|X(k)

t ).

EndFor

Normalize weights using

w
(k)
t =

ŵ
(k)
t∑N

i=1 ŵ
(i)
t

Make resampling if needed.

EndFor

Figure 4.2: The LS-N-IPS algorithm.

Here || . || can be the scaled maximum norm, or some other appropriate norm.
If λ = 0, then no local search modification is involved, and we get the usual N-IPS

algorithm (Bootstrap Filter). On the other hand, λ → ∞ yields to a complete search
in X, since the algorithm only samples the likelihood without considering the dynamical
model. This is clearly not a desired behavior. These arguments show that λ is an important
design parameter, the choice of which not just improves the particle representation, but
also controls the bias on the original tracking model.

For moderate λ one might explain the local search as a slight modification to the original
dynamical model, which is in practical cases an approximate one by itself. However one can
prove that the introduced bias stays bounded [45]. In [43] a detailed theoretical analysis
of this algorithm can be found. Here we only include some experimental results on the
contour tracking problem.

4.3.1 Implementing Local Search for Contour Tracking

In contour tracking the task of the local search procedure is to find the best matching
admissible contour in a small vicinity of the one predicted by the dynamical model [44].
The problem is illustrated in Figure 4.4. In the followings we will describe two methods,
a least mean square (LMS) based local search and a neural network (NN) based one [47].
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Figure 4.3: Visualization of the LS-N-IPS algorithm. The curves instead of the straight
lines are meant to represent the local search process. Note that the posterior is represented
nicely.

In both cases the search is implemented by first finding the most likely edge locations and
directions along some normal lines of the predicted curve, and then finding the configuration
that matches best to these measurements. The main difference between the two approaches
lies in the way of finding the configuration given the edge measurements, or in other words
mapping the new contour control point locations to the configuration space.

Least Mean Square based Local Search

Assume that a contour (S) corresponding to some pose Z (usually a subspace of the state
space X) is given. As we have discussed in Section1.3.1 the likelihood of the contour given
the image (the observation) is the product of the individual “likelihoods” of edges being
located at some contour normal measurement points along the spline curve.

Motivated by this definition, the LMS-based local search algorithm [43] searches for
maximal edge ‘likelihood’ values along the normals in the vicinity of the measurement
points, the neighborhood itself defined by the search length, l > 0. The measurement
points are chosen to be the support points (qx

1 , qy
1)

T , . . . , (qx
n, qy

n)T .
Assume that the search yields to the points (q̂x

1 , q̂y
1)

T , . . . (q̂x
n, q̂y

n)T . Let

q̂ = (q̂x
1 , . . . q̂x

n, q̂y
1 , . . . q̂

y
n)T

(yellow points in Figure 4.4). Let ŝ be the spline curve corresponding to q̂.
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Figure 4.4: Local search problem in contour tracking. Left image shows the predicted
contour (blue) with its control points (red) and a single edge likelihood measurement line
(black), and the result of a local search (green contour with orange control points. The
middle image shows the same on a real image. The searched edge locations lying on the
measurement lines are shown in yellow. The right image is just a zoom of the middle image
in the relevant region.

The next step is to find a configuration whose corresponding spline curve matches ŝ
the best:

Ẑ = argminZ‖S(Z)− Ŝ‖2
2.

Here S(Z) denotes the spline curve corresponding to the configuration Z, i.e., the spline
curve corresponding to the support vector qZ = WZ + q0.

It is well known that if S is the spline contour corresponding to q then ||S||22 can be
expressed as a function of q alone. In particular,

||S||22 =
1

L

∫ L

0

S2(t)dt = qT

(
B 0
0 B

)
q = qT Uq,

where

B = A−T

(
1

L

∫ L

0

ϕ(u)ϕ(u)T du

)
A−1.

Therefore, if we let ‖q‖2
S = qT Uq denote the weighted `2 norm of q then

Ẑ = argminZ∈Rd‖WZ + q0 − q̂‖2
S.

Now, by standard LMS calculations Ẑ = W+(q̂ − q0), where W+ is the pseudo inverse
with the above norm, i.e. W+ = (W T UW )−1W T U . The corresponding projected support
vector shall be denoted by q⊥ = WẐ + q0.

Note that it is not obvious to see why the dynamics perturbed by this local search
operator LSλ stays close to the original dynamics. One can however check weather the
adjusted pose is close enough to the predicted one, and reject the result of the local search
if it is too far in the configuration space.
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Neural Network based Local Search

In the general formulation of the LS-N-IPS algorithm, the local search procedure was given
as a mapping of a predicted configuration Z and the actual observation Y to an adjusted
configuration Ẑ. One approach to “design” this operator is to learn it by some machine
learning algorithm [47].

This approach is particularly fruitful if the observation function (r) can be simulated,
since in this case training examples can be generated at no cost by drawing pairs of config-
urations (Z,Z ′) “close to each other” and drawing measurement signal Y with considering
Z as the predicted particle and Z ′ as the true state. A training data point of the machine
learning algorithm can be generated by simulating the local search process at Z and simu-
lating the observations by r(Y |Z ′). The desired output is set to Z ′. The learning criterion
might be to choose LSλ such that for ‖Z − Z ′‖ ≤ λ the cost

E[‖LSλ(Z, r(Y |Z ′))− Z ′‖2]

is minimized. A practical approximation of the above criterion based on sample averages
is

E =
1

n

n∑
i=1

‖LSλ(Zi, r(Y |Z ′
i))− Z ′

i‖2,

where ‖Zi−Z ′
i‖ ≤ λ. One hopes that training e.g. a neural network to minimize the above

criterion will then yield a “good” local search operator.
Note that if the above described mapping (Z, Y |Z ′) → Z ′ is invariant to some similarity

group G, i.e.: H ∈ G implies (H(Z), Y |H(Z ′)) → H(X ′), then the above learning problem
can be further simplified by choosing Z as a normal pose Z0.

In the followings neural networks will be used to represent LSλ in the contour tracking
problem. Note that normal pose trick can be used here as well.

The training data was generated as follows: Random poses are generated in the vicinity
of a “normal” pose Z0. Then a contour search procedure is executed, starting from the
contour corresponding to the normal pose. This procedure finds intersection points of the
contour corresponding to the randomly generated pose Z ′ and the normals of the contour
Z0 at its support points, just like as it was described in Section 1.3.1. (Figure 4.4 gives an
example.) If, for a given normal, more than one intersection point is found one of them is
selected at random. The input to the neural network is then composed of the coordinates
of the found intersection points. The desired output is set to Z ′.

When the neural net is trained, it is used as shown in Figure 4.5.

4.3.2 Experimental Results on the Contour Tracking Problem

Several networks were tried with various contours. All networks were trained with 100, 000
randomly generated data points, perturbed by Gaussian-like noise (applied for regulariza-
tion purposes).

In all the experiments the net outputs were scaled to ensure that the configuration
coordinates receive equal importance during training. We used λ = (7, 7, 0.15, 0.1)T , where
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For i = 1, . . . , n

Calculate edge likelihoods along the normal segment of S(WZ +
q0) at the i-the control point (qx

i , qy
i ), with (search) length l = l0s, where

s is the scale encoded in Z.

Select the maximum value on the normal segment: (q̂x
i , q̂y

i ).

Normalize {(q̂x
i , q̂y

i )}
n
i=1 with the transformation H for which HZ = Z0,

where Z0 is the reference pose that was used for training the neural
network.

EndFor
Excite the neural network with

{
H(q̂x

i , q̂y
i )

T
}n

i=1
. Let the resulting

configuration be Ẑ0.
Compensate for the normalization step by transforming Ẑ0 back by
Ẑ = H−1Z0.
Return Ẑ.

Figure 4.5: Neural Net Based Local Search for the contour tracking problem.

the first two coordinates correspond to the translation parameters (the contour to be
tracked was about of size 60 × 60 on the same scale), the third coordinate is rotation in
radians, whilst the last is the scale parameter. We have chosen l0 = 16. The neural network
was trained using RProp [26].

The above algorithm was tested on several real-world tracking problems. In the most
difficult scenario, a fast moving hand was tracked in a highly cluttered environment. Us-
ing the LMS-based algorithm with 50 particles we could achieve a tracking speed of 30
frame/second on our Intel Pentium 4 machine, without scarifying accuracy and robust-
ness. Using the NN-based algorithm similar tracking accuracy is achieved with as few as
25 particles [47], half of the amount needed in case of LMS [44]. In this example the num-
ber of support points was 30. This leads to a tracking speed of 73 frames/seconds which
is a significant improvement (see table).

Figure 4.6 shows every 15th frame of a typical tracking session. This image sequence
was recorded at 30 frames/second. The duration of the whole sequence is 6 seconds and
the hand moves 9 times from one corner of the image to the other. The number of particles
was chosen to be 30. The image resolution was 240× 180.

4.4 Local Likelihood Sampling

In this section after introducing some basic notations we will introduce the Local Likeli-
hood Sampling scheme [49] that can be used to generate a particle representation of the
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Experiment N-IPS LS-N-IPS LS-N-IPS
(Bootstrap Filter) with LMS with NN

Number of Particles need 2000 100 30
Pred. time per particle(ms) 0.123 0.31 0.452
Tracking Frame rate(frame/sec) 4 32 73

Table 4.1: Comparison of tracking result with different algorithms. For an explanation see
the text.

Figure 4.6: Tracking hand in clutter with 30 particles. Black contours show particles having
high observation likelihoods, whilst the white contour shows the predicted contour of the
hand. When no black contour is given, then typically there is one particle which has
significantly higher likelihood than the others.
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product of a density and a likelihood function. In fact the main interest is the density com-
ing from the product after normalization. After analyzing this general sampling scheme
theoretically, we show how to use it in particle filtering.

Some Notation

Remember that for an integrable function f , I(f) denoted the integral of f with respect to
the Lebesgue measure. Lp (0 < p ≤ +∞) denotes the set of functions with finite p-norm.
The p-norm of a function is denoted by ‖f‖p. For a function f ∈ Ls(Rd), s ∈ {1, 2}, F (f)
denotes its Fourier transform:

F (f)(ω) =

∫
e−iωT xf(x)dx .

The inner product defined over L2(Rd) is defined by

〈f, g〉 =

∫
f(x)g(x)dx ,

where a denotes the complex conjugate. Convolution is denoted by ∗:

(f ∗ g)(x) =

∫
f(y)g(x− y)dy .

The Local Likelihood Sampling (LLS) scheme

Assume we want to sample from a product of two densities f and p. The basic idea of
the proposed sampling scheme is to first draw samples from p, then allow the density f to
‘perturb’ the position of the particles. A window-function (g) is used to localize the effect of
f on the sample, hence the name of the procedure. The sampling scheme is shown in Figure
4.7, and is illustrated on Figure 4.8. The output of the sampling scheme is a set of particles[
(Z(i), w(i))

]N
i=1

, that can be used to approximate I(hfp) by JN =
∑N

j=1 w(j)h(Z(j)), where

h ∈ L1 is any function of interest. Actually, as usual, we are more interested in studying

IN(h,w) =

∑N
j=1 h(X(j))w(j)∑N

j=1 w(j)
(4.2)

which also converges to I(hfp)/I(fp) as N →∞ with probability one when e.g. (X(j), w(j))
are independent of each other.

Here and in what follows we assume that g ∈ L1 and is a non-negative function. It
could be e.g. a Gaussian, or the characteristic function of some convex set.

4.4.1 Theoretical Analysis

The following proposition shows that weights are calculated so that (Z(j), w(j)) is a properly
weighted pair for f, p:
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For i = 1, . . . , N

Sample X(i) from p(·).

Draw Z(i) from
Z(i) ∼ f(·)g(X(i)−·)

(f∗g)(X(i))
.

Calculate importance weight

w(Z(i)) = w(i) = (f ∗ g)(X(i))
p(Z(i))

p(X(i))
.

EndFor

Figure 4.7: The Local Likelihood Sampling (LLS) Algorithm to generate a particle repre-
sentation from the product of f and p.

Proposition 4.4.1. Assume that g ∈ L1 is a window function satisfying g ≥ 0 and
I(g) = 1. Let f be a bounded, integrable function and let p > 0 be a density. Then, the
above sampling procedure yields properly weighted pairs (Z(j), w(j)) with respect to f, p. (see
Definition 2.2.1).

Proof. Let h be an arbitrary integrable function and let I = E[w(j)h(Z(j))]. By the law of
total probability, I = E[E[w(j)h(Z(j)) |X(j)]]. By the definition of Z(j) and w(j),

E[wjh(Zj) |Xj] =

∫
h(z)p(Z(j)|X(j))w(Z(j)), dz

=

∫
h(z)

(f ∗ g)(X(j))p(z)

p(X(j))

f(z)g(X(j) − z)

(f ∗ g)(X(j))
dz

=

∫
h(z)

p(z)

p(X(j))
f(z)g(X(j) − z) dz ,

and hence

I =

∫ ∫
h(z)

p(z)

p(x)
f(z)g(x− z) dz p(x) dx

=

∫ ∫
h(z)p(z)f(z)g(x− z) dz dx .

The order of integration can be exchanged, because Fubini’s theorem’s conditions are
satisfied. Using I(g) = 1 we get the desired equality:

I =

∫
h(z)p(z)f(z)dz .
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Figure 4.8: The visualization of the Local Likelihood Sampling (LLS) algorithm. The figure
shows the sampling steps of the LLS algorithm. First, particles sampled from density p.
The positions of the particles undergo a random perturbation that depends on the shape
of likelihood f in the neighborhood of the particle’s position. In the figure dotted line
positions changes to solid line positions. Weights are modified such that the sampling
scheme remains unbiased.
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The efficiency of LLS will depend on the correlation of f and p: if the main modes of p
were far away from the main modes of f then the scheme will be inefficient. Another source
of inefficiency is when the support of g is too small to move the samples to the vicinity of
the essential modes of f or when it is too large. In the limit when the support of g grows
to X the scheme gets worst than the likelihood sampling because of the variance is added
in the calculation of importance weights. In the other limiting case when the support of
g shrinks to a single point then the procedure becomes identical to the Bootstrap Filter’s
naive sampling strategy.

In order to compare the efficiency of LLS with that of the Bootstrap Filter’s naive
sampling scheme we compare the variances of the weights of these two algorithms, as
suggested by the Liu’s rule of thumb discussed previously (see Section. 2.4). Note that,
in general E[w(X)] 6= 1. However, defining w̃ = w/I(fp), we have IN(h,w) = JN(h, w̃).
Hence, the efficiency of the scheme defined by (X, w) is the same as the efficiency of the
scheme defined by (X, w̃). Now, since E[w̃(X)] = 1, Liu’s “rule of thumb” applies and we
get that the relative efficiency of using (X, w̃) is

1

1 + Var[w̃(X)]
=

1

1 + Var[w(X)]
I(fp)2

,

since Var[w̃(X)] = Var[w(X)]
I(fp)2

. Noting that in our applications f and p are fixed (do

not change when comparing different schemes) we find that, according to the “rule of
thumb” in order to maximize the efficiency of a scheme one should still try to mini-
mize Var[w(X)]. Since for any properly weighted pair (X, w), E[w(X)] = I(fp) and
Var[w(X)] = E[w2(X)] − E[w(X)]2 we find that minimizing Var[w(X)] is equivalent to
minimizing E[w2(X)].

For the naive sampling scheme of the Bootstrap Filter we have seen (Equation 2.3) that
E[w2

N(X)] = 〈f, fp〉 = I(f 2p). It is easy to see that for the proposed sampling scheme:

E[w2
LLS] = E[E[(w(j))2 |X(j)]]

=

∫
p>0

∫
(f ∗ g)(x)

f(z)p2(z)

p2(x)
g(x− z) dz p(x) dx

=

∫
p>0

(f ∗ g)(x)
1

p(x)

∫
f(z)p2(z)g(x− z) dz dx

= 〈f ∗ g,
(fp2) ∗ g

p
〉.

At a first sight this formula might seem a little complicated, but the following proposition
provides a nice reformulation and allows us to make comparisons between the performance
of the naive method and that of LLS.

Proposition 4.4.2. Assume that g ∈ L1 is an even, window function satisfying g ≥ 0
and I(g) = 1 and let f be a bounded, integrable, nonnegative function and let p > 0 be a
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density. Define the operator A : L1 → L∞ by

(Ah)(u) =

∫
h(t)p(t)g(t− u)

(
p(t)

p(u)
− 1

)
dt

Assume that for some s ∈ [1,∞],

ε = sup
h∈L1,h≥0

sup
u

(Ah)(u)

‖h‖s

< +∞ . (4.3)

Let (X, Z, w) be a random sample as defined in the above algorithm. Then

E[w2
LLS] ≤ 〈f ∗ g, fp ∗ g〉+ εI(f)‖f‖s. (4.4)

Proof. Pick an arbitrary x. Using (Af)(x) ≤ ε‖f‖s we get∫
f(z)p(z)g(x− z)

p(z)

p(x)
dz ≤

∫
f(z)p(z)g(x− z) dz + ε‖f‖s =

(
(fp) ∗ g

)
(x) + ε‖f‖s .

Hence,

E[w2
LLS] ≤

∫
(f ∗ g)(x)

((
(fp) ∗ g

)
(x) + ε‖f‖s

)
dx .

Now, since I(g) = 1 and f, g are non-negative, an application of Fubini’s theorem yields
that I(f ∗ g) = I(f). Therefore, exploiting again that f, p, g ≥ 0, we get the desired
inequality:

E[w2] ≤ 〈f ∗ g, (fp) ∗ g〉+ εI(f)‖f‖s ,

thus finishing the proof.

It follows immediately that LLS is more efficient than the naive sampling scheme when-
ever

εI(f)‖f‖s ≤ 〈f, fp〉 − 〈f ∗ g, (fp) ∗ g〉.

Clearly, this formula agrees well with the intuition that LLS works well if f is peaky and p
is smooth: the right hand side is maximized, when the cross-correlation of f and fp is high
and the cross-correlation of f ∗ g and (fp) ∗ g is small. Note that convolution with g can
be thought of as low-pass filtering (e.g. think about when g is the characteristic function
of the unit interval). Using Parseval’s equality, and the Convolution Theorem, we get:

〈f ∗ g, (fp) ∗ g〉 = 〈F (f ∗ g), F ((fp) ∗ g)〉 =

∫
F (f)F (fp)|F (g)|2.

Hence g cuts some of the high frequency of f and fp. As a result, the cross-correlation of
f ∗ g and (fp) ∗ g can be expected to be smaller than the cross-correlation of f and fp:

〈f, fp〉 = 〈F (f), F (fp)〉 =

∫
F (f)F (fp).
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Now let us turn our attention to the left hand side of inequality (4.4). First, note that

ε ≤ sup
t,u

p(t)

p(u)
g(t− u)(p(t)− p(u)) =

(
sup

u
p(u)

)
sup

d
sup

t

p(t)

p(t + d)
g(d)

(
p(t)

p(t + d)
− 1

)
,

assuming that g is any function satisfying the conditions of the previous proposition. Let
α(d) = supt

p(t)
p(t+d)

. Clearly α(d) characterizes the smoothness of p well. The above expres-

sion can be upper bounded if e.g.: α(d) stays close to 1 when d is small, i.e: p is locally
smooth, and α(d)g(d) stays close to 0 if d is bigger, i.e.: g’s tail decays more than α(d)
increases.

A more detailed analysis can be given is g is compactly supported. Let d > 0 be such
that g(x) = 0 whenever ‖x‖ ≥ d, choose s = 1 and define

pd(x) = inf
‖y‖<d

p(x + y).

Assume that supx p(x)/pd(x) ≤ +∞ and g ≤ γ. Then g(t− u)/p(u) ≤ γ/pd(t) and thus

p(t)g(t− u)
p(t)− p(u)

p(u)
≤ γp2(t)/pd(t)− γpd(t) ≤ γ‖p‖∞‖p/pd‖∞,

hence ε ≤ ‖p‖∞‖p/pd‖∞. Hence ε is smaller when p and pd stay close to each other, ie. if
p is sufficiently smooth.

As a summary we expect LLS to be more efficient than naive sampling whenever the
observation density f is peaky (has lots of high frequency energy) and the prediction
density p is smooth on the scale of the window function. In a typical visual tracking
where the object is expected to make sudden movements the dynamics is typically chosen
to have a large variance. Further, as it was already discussed above, a good observation
likelihood function would separate the object from the background and the surrounding
clutter sharply, hence one expects the observation likelihood function to be considerably
high peaked. Thus, one expects LLS to give a considerable advantage over the naive
sampling scheme in visual tracking tasks.

4.4.2 Inside LLS

Figure 4.9 illustrates the difference between the performance of LLS and the naive scheme
in the simple scenario that we used previously to illustrate the possible inefficiency of
the Bootstrap Filter. In this experiment p was a single Gaussian and f was a mixture
of Gaussians; the graphs of p and f are shown in Figure 4.1. The product is shown on
Figure 4.9. 50 samples were drawn using both methods and histograms were calculated.
Since the number of particles is very small, both estimates are rather crude. However, it
should be clear from the figure that LLS has a clear advantage over the naive sampling
scheme in representing the highest peak of pf : the naive sampling scheme fails to allocate
any particles in the vicinity of this peak hence it fails to capture its mass (note that for a
sample size of 50 this happens with very high probability). Note that the simulation is set



4.4. LOCAL LIKELIHOOD SAMPLING 55

up so that in the two cases the samples X(1), . . . , X(50) were exactly the same: the advantage
of LLS comes from its ability to modify these initial ‘guesses’ to obtain a ‘refined’ sample
Z(1), . . . , Z(50). Here the window function g is a characteristic function with a support of
size 51.

In order to obtain qualitative results we ran Monte-Carlo experiments to estimate
the variance of the weights. In particular, our goal was to estimate the dependence of
the representation’s quality on the size of the window’s support. Hence we changed the
window size from zero to half of the scale of the support of fp and for each window size
tested we drew 500, 000 samples and computed the sample variance of the weights. The
resulting graph is shown in Figure 4.10. Note that the variance of the weights of the
naive sampling scheme correspond to sampling using LLS with a window-size of zero. The
measured variance looks quasi-convex2 and is quite flat around the optimal window size -
such a behavior can be very advantageous in applications as it shows that the algorithm
is quite robust to the window size parameter. Furthermore it might be possible to find
a good window size by estimating the variance at a few window sizes and fitting e.g. a
quadratic function. Given the graph we conclude that for a wide range of window sizes LLS
is substantially more efficient than the naive sampling scheme, at least in this particular
example.

4.4.3 LLS based Particle Filtering

The particle filtering algorithm, where the Local Likelihood Sampling scheme is used to
sample from the product of the prediction density and the observation likelihood, is given
in Figure 4.11.

Note that the algorithm can be generalized easily to use window functions that change
their shape depending on the proposed samples X

(k)
t : One just needs to replace g(X

(k)
t −x)

in the sample-perturbation step by g(X
(k)
t − x; X

(k)
t ) and redefine α

(k)
t accordingly: α

(k)
t =∫

p(Yt|x)g(X
(k)
t − x; X

(k)
t ) dx. The simplest application of this is to match the size of the

support of g to the ‘scale’ information in X
(k)
t . Similarly g can be made dependent on

the observation Yt. Also, when the state space is multi-dimensional, g can be used to
perturb the samples along certain selected dimensions only. As an example to illustrate
for the usefulness of this, consider contour tracking. During the course of calculating the
likelihood values, the derivative of the image is calculated in a small neighborhood of
the support points of the splines. Hence, in this case perturbing the samples along the
translation components can be implemented with almost no increase in the computation
cost. On the other hand perturbing the samples along the scale and rotation components
would require a substantial increase in the computational cost.

2A function is quasi-convex, if all its level sets are convex.
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Figure 4.9: Representations of product densities given by the naive sampling scheme of the
Bootstrap Filter and LLS. Shown is the product function f p and the empirical measures
corresponding to the two algorithms (top figure: naive sampling, bottom figure: LLS). The
basic sample set is the same in both cases and has 50 elements. Note that the representation
provided by the naive method fails to capture the highest peak of the product, whilst LLS
succeeds at allocating a few particles to the peak.
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Figure 4.10: Variance of the weights as a function of the size of the window used in LLS.
Smaller variance means better performance. For comparison, the variance of the naive
sampling scheme corresponds to the variance shown at 0, i.e: 2 · 10−5, the variance of the
likelihood sampling is 1.25 · 10−5, the LLS variance with the optimal window function is
7.15 · 10−6. Note that in the worst case LLS is worse than likelihood sampling, because
of the additional random sampling steps. In the experiments the window function was a
characteristic function.
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Initialize a sample set
[
(Z

(k)
0 , 1/N)

]N
k=1

according to the prior p0(·).
For t = 1, 2, . . .

Resample from
[
(Z

(j)
t−1, w

(j)
t−1)
]N

j=1
if needed, to obtain

[
(Z

(j)
t−1

′
, 1/N)

]N
j=1

.

For k = 1, 2, . . . , N

Predict X
(k)
t by drawing a sample from K(·|Zk

t−1
′
).

Perturb X
(k)
t by drawing Z

(k)
t from 1

α
(k)
t

r(Yt|·)g(X
(k)
t − ·), where

α
(k)
t =

∫
r(Yt|x)g(X

(k)
t − x) dx .

Update the weight w
(k)
t using

w
(k)
t = α

(k)
t

K(Z
(k)
t |Z(k)

t−1

′
)

K(X
(k)
t |Z(k)

t−1

′
)

.

End

Normalize the weights using w
(k)
t := w

(k)
t /

∑N
j=1 w

(j)
t .

End

Figure 4.11: The LLS-based Particle Filter.
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4.5 Local Importance Sampling

Despite the wide range of possibilities to choose g it can happen that sampling from
r(Yt|·)g(X

(k)
t − ·)/α(k)

t is prohibitive. In this case it is worthwhile to introduce a pro-
posal function q

X
(k)
t

(·) that makes the implementation of sampling possible, efficient, and

approximates r locally well. The corresponding algorithm, called Local Importance Sam-
pling [50, 51], is shown in Figure 4.12. Notice that with the choice qXj

= f the algorithm
becomes identical to LLS.

For i = 1, . . . , N

Sample X(i) from p(·).

Draw Z(i) from

Z(i) ∼ q
X(i) (·)g(X(i)−·)
(q

X(i)∗g)(X(i))
.

Calculate importance weight

w(Z(i)) = w(i) = (qX(i) ∗ g)(X(i))
f(Z(i))

qX(i)(Z(i))

p(Z(i))

p(X(i))
.

EndFor

Figure 4.12: The Local Likelihood Sampling (LLS) Algorithm to generate a particle rep-
resentation from the product of f and p. For any function h ∈ L1 of interest, approximate
I(hfp) by JN =

∑N
j=1 w(j)h(Z(j)).

4.5.1 Theoretical Analysis

The particle filtering algorithm that employs LIS in its main loop is shown in Figure 4.13.
Building on the previous argument that showed that LLS is more efficient than the naive
algorithm, one expects that LIS will also be more efficient under similar conditions provided
that the proposal function qXi

fits f(·) locally at Xj. This is demonstrated in the next
section in some experiments with tracking license plates of cars on video sequences.

Regarding the bias of the algorithms, the following proposition holds:

Proposition 4.5.1. Let (Xt, Yt) evolve according to a tracking model described in Sec-
tion 1.2 and consider the LIS filter. Assume that g is a non-negative, integrable function
satisfying I(g) = 1 and let qx,y(·) > 0 be a bounded, integrable function for all x, y. Let

{(ŵ(k)
t , Z

(k)
t )}N

k=1 be the particle set obtained at time step t. Then

E[ŵ
(k)
t h(Z

(k)
t )|Y1:t] = E[h(Xt)|Y1:t]p(Yt|Y1:t−1).
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.
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X
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∫
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t ,Yt
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t − x) dx .

Update the weight w
(k)
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(k)
t = α

(k)
t

r(Yt|Z(k)
t )
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t ,Yt
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EndFor

Normalize the weights using

w
(k)
t :=

w
(k)
t∑N

j=1 w
(j)
t

.

EndFor

Figure 4.13: LIS-based Particle Filter
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Proof. First note that α
(k)
t = (q

X
(k)
t ,Yt

∗ g)(X
(k)
t ). Let h be an arbitrary integrable function

and let I = E[ŵ
(k)
t h(Z

(k)
t )|Y1:t]. By the law of total probability, I = E[E[ŵ

(k)
t h(Z

(k)
t ) |X(k)

t , Y1:t]].
By the definition of Zt and ŵt,

E[ŵ
(k)
t h(Z

(k)
t ) |X(k)

t , Y1:t]

=

∫
h(z)(q

X
(k)
t ,Yt

∗ g)(X
(k)
t )

r(Yt|z)

q
X

(k)
t ,Yt

(z)

K(z|Z(k)
t−1

′
)

K(X
(k)
t |Z(k)

t−1

′
)

q
X

(k)
t ,Yt

(z)g(X
(k)
t − z)

(q
X

(k)
t ,Yt

∗ g)(X
(k)
t )

dz =

=

∫
h(z)

K(z|Z(k)
t−1

′
)

K(X
(k)
t |Z(k)

t−1

′
)
r(Yt|z) g(X

(k)
t − z) dz ,

and hence by Fubini’s theorem

I =

∫ ∫
h(z)

K(z|Z(k)
t−1)

K(x|Z(k)
t−1)

r(Yt|z) g(x− z) dzK(x|Z(k)
t−1) dx

=

∫
h(z)K(z|Z(k)

t−1

′
)r(Yt|z) dz ,

which equals the posterior multiplied by p(Yt|Y1:t−1), finishing the proof.

Similarly to Proposition 4.4.1, this statement shows that the two-step sampling step of
the LIS filter is unbiased. Hence, we can expect that LIS filters will enjoy similar theoretical
properties as the Bootstrap Filter, or the more general SIR filters [13]. Building on our
previous argument, it is not hard to show that LIS is more efficient than the Bootstrap
Filter under conditions when LLS is more efficient than the Bootstrap Filter and when
the proposal function qx,y fits r(y|·) around x for any x, y. Instead of developing such a
theoretical result3, the efficiency of the new algorithm will be demonstrated in the following
sections on a number of problems.

4.5.2 Implementing LIS for Japanese License Plate Tracking

Since we already defined the dynamics and a likelihood model in Section 1.3.2, we only
need to specify the window function g and the importance function in order to define a
LIS-based particle filter for this problem.

We have chosen the perturbation to act only on the translation components (i.e. the
perturbation does not change the scale and the orientation, nor does it change the ‘history’
components of the state). This can be expressed by making g to have the form

g(u, w, θ, uprev, wprev, θprev) = gθ
0(u)gθ

1(w)δ(θ)δ(uprev)δ(wprev)δ(θprev),

where δ(·) is the Dirac-delta function. The function gθ
0 (gθ

1) is a characteristic function of
an interval centered around 0 with a length twice of the horizontal (vertical) size of the LP.

3It can be shown that the variance of weights in LIS is: ELIS [w2] = 〈 q∗g
p , f2p2

q ∗ g〉.
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This means that in order to implement LLS the likelihood function r(y|u, w, θ) must be
calculated for a set of values of u, v centered around the predicted position of the plate’s
center. Unfortunately, the evaluation calculation of the likelihood function at a single point
is already quite expensive.

The main idea is to write the proposal q using Bayes-theorem in the form q(u, w) =
q(w)q(u|w) and to sample (U ′, W ′) from q by first drawing W ′ from the marginal q(w)
and then drawing U ′ from the conditional q(u|W ′). The procedure we use is as follows:
Assume that we are given a predicted pose (U,W, θ). Then let the perturbed translation
components (U ′, W ′) be sampled as follows:

1. Sample the new vertical position W ′ from

qh
X(Yt|U, ·, θ) =

rh(Yt|U, ·, θ)g1(W − ·)∫
rh(Yt|U,w′, θ)g1(W − w′)dw′ .

.

2. Sample the new horizontal position U ′ from

qv
X(Yt|·, W ′, θ) =

rv(Yt|·, W ′, θ)g0(U − ·)∫
rv(Yt|u′, W ′, θ)g0(U − u′)du′

.

Note that if the LP’s width and height are a and b, respectively, then this procedure evalu-
ates rh 2b times, whilst rv is evaluated 2a times. Note that for a naive LLS implementation
we would need to evaluate both of these likelihoods 4ab times, hence the proposed method
scales linearly whilst LIS scales quadratically.

Will the above procedure be efficient in practice? The key observation here is that the
likelihood rh(y|u, ·, θ) is not sensitive to u, i.e. rh(y|u, ·, θ) ≈ rh(y|u′, ·, θ) when u and u′

are close to each other. This follows because LPs are horizontally elongated. Hence, if
qX,Y (u, w|y, θ) denotes the sampling distribution of (U ′, W ′) then qX,Y will be highly corre-
lated with r(Yt|·, ·, θ) in the neighborhood of (U,W ) (note that U and W are components
of X).

It follows by inspection that the proposal function q corresponding to the above proce-
dure has the form:

qX,Y (U ′, W ′) = qh
X(Yt|U,W ′, θ)qv

X(Yt|U ′, W ′, θ).

Straightforward calculations show that αt = (qX,Yt ∗ g)(X) = 1. Hence, it follows that
the weight w associated with a perturbed particle Z = (U ′, W ′, . . .) is

w =
r(Y |U ′, W ′, θ)

qh
X(Yt|U,W ′, θ)qv

X(Yt|U ′, W ′, θ)

K(U ′, W ′, θ|Uprev, W prev , θprev)

K(U,W, θ|Uprev, W prev, θprev)
.
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4.5.3 License Plate Tracking Results

The performance of the LIS-based filter with N = 100 particles was compared to the
performance of the Bootstrap Filter that used N = 750 particles. The number of particles
was determined in preliminary experiments with the goal to match the running times of
the two filters. Actually it turned out that we have slightly overestimated the running
time of the LIS-based particle filter. In particular, on our 1.7GHz Intel test machine we
have measured a processing speed of approximately 48 frames per second for the Bootstrap
Filter (with N = 750), whilst for the LIS-based particle filter we have measured a processing
speed of approximately 65 frames per second (using N = 100).

Performance evaluation was done as follows: We have selected a video sequence at
random from our collection of samples. The test sequence is composed of 298 frames.
‘Ground truth’ was obtained by running the Bootstrap Filter for the test video sequence
with a larger number of particles and then correcting the results manually. In each time
step particle locations were averaged to get a point estimate of the LP’s position. This
position was compared to the ground truth. Some frames of this sequence are shown in
Figure 4.14 together with the plate positions estimated by the LIS based particle filter and
projected back onto the image.

When evaluating the precision of tracking we had to calculate the distance of the point
estimates of the LP-configurations to the true configurations. This we implemented by
computing the sum of distances of their corresponding vertex points. Furthermore, when
we evaluated the reliability of tracking we declared the LP as ‘lost’ if the distance of the
estimated LP configuration to the true one was bigger than one third of the true LP’s
height. The probability of this event was estimated for each frame by means of running a
large number of Monte-Carlo experiments. Average tracking error was measured for the
rest of the cases.

Figure 4.15 shows the probability that the LP is lost on the test sequence as a function
of the frame number. It should be clear from this figure, that the LIS-based particle filter
tracks the license plates significantly more robustly than the Bootstrap Filter. The error
of tracking is shown in Figure 4.16. Note that not all frames contain a LP (e.g. the frames
around 50 and 150 do not contain any LPs). For these frames tracking error was artificially
reset to zero. Results depicted on Figure 4.16 indicate that despite the facts that the LIS
based particle filter uses a smaller number of particles, runs faster than the Bootstrap
Filter, and track LPs more reliably than the Bootstrap Filter, it can also yield the same
or better tracking performance than the Bootstrap Filter. Hence, we conclude that the
proposed algorithm does improve upon the Bootstrap Filter, at least in the particular
example studied here.

4.5.4 Using Gauss-Mixture Proposals in LIS Filters

In this section we will show that if in LIS the window function is chosen to be a Gaussian
and the proposal function is chosen to be a mixture of Gaussians at the same time, we get a
particularly attractive algorithm [50]. Since continuous densities can be well-approximated
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Figure 4.14: Sample images of the test video sequence. The video sequence is recorded by
a commercial NTSC camera. The frame indexes of the images are 9, 29, 82, 105, 117 and
125. The red rectangles on the image correspond to the estimated LP position using the
proposed LIS-based particle filter.

Figure 4.15: Probability of not tracking the license plate as a function of the frame index.
Note that the Bootstrap Filter tends to lose the LP at difficult frames. LIS filter’s tracking
reliability is much better than the Bootstrap Filter’s, despite that it uses less particles and
runs faster than the Bootstrap Filter.
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Figure 4.16: Average tracking error as a function of the frame index for the Bootstrap Filter
and the LIS filter. Tracking error is estimated for those cases only when the estimated LP
is closer to the true one than a certain threshold.
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to any error by mixtures of Gaussians [42, 38] the resulting algorithm retains it generality.
Further, as we show it in the followings, the algorithm can also be implemented efficiently.

Let u = (x, y) and choose qx,y = qu to be a mixture of Gaussians with n components,
having priors pu,1, . . . , pu,n, means µu,1, . . . , µu,n and covariance matrices Σu,1, . . . , Σu,n.
Then

qu(z) =
n∑

i=1

pu,i
e−1/2(z−µu,i)

T Σ−1
u,i(z−µu,i)

((2π)N |Σu,i|)1/2
. (4.5)

Let the window function be a zero-mean Gaussian with variance Σg:

g(z) = ((2π)N |Σg|)−1/2e−1/2zT Σ−1
g z. (4.6)

In order to implement the LIS filter one needs to be able to draw samples from qu(·)g(x−·)
and to evaluate (qu ∗ g)(x). For the above specific choices, it turns out (see appendix D for
the multiplication of Gaussian densities) that qu(·)g(x− ·) is a mixture of Gaussians, too
with covariances and means defined by the following equations:

Cu,i = (Σ−1
u,i + Σ−1

g )−1, (4.7)

νu,i = Cu,iΣ
−1
g x + Cu,iΣ

−1
u,iµu,i, (4.8)

and un-normalized weights:

Lu,i = pu,i
e−1/2(µu,i−x)T Σ−1

u,iCu,iΣ
−1
g (µu,i−x)

((2π)N |Σu,i||Σg|/|Cu,i|)1/2
. (4.9)

Let Lu =
∑n

i=1 Lu,i. Notice that (qu∗g)(x) = Lu. Further, sampling from qu(·)g(x−·) can be
implemented by first drawing an index from the normalized weights (Lu,1/Lu, . . . , Lu,n/Lu)
and then drawing a sample from the appropriate Gaussian. The corresponding algorithm
is shown in Figure 4.17.

4.5.5 Experiments on the Bearings Only Problem

The purpose of this section is to present the results of a series of experiments where
the LIS filter is compared with the baseline Bootstrap Filter and the Auxiliary Variable
particle filter(AVPF, see appendix B), the purpose being to systematically compare LIS
with these other algorithms in a controlled environment. Actually, we used two versions of
the bearings-only tracking problem: The standard single object version where the problem
is to track a single ship by using angular measurements only and a version with three ships,
where they move independently of each other and the observations carry information about
the identity of the ships that they originate from. The purpose of considering this second
problem was to study the scaling properties of the algorithms studied as a function of the
dimensionality of the state space.

In the experiments, where three ships are to be tracked, the initial state is sampled
from three Gaussians. For all of these Gaussians we use the covariance matrix given in



4.5. LOCAL IMPORTANCE SAMPLING 67

Section 1.3.3. The means of the Gaussian belonging to first ship are identical to the means
used in the single-ship experiments, whilst the means of the of the other Gaussian were
(0.02,−0.01, 0.6,−0.055) and (0.05,−0.01,−0.2,−0.02).

In the multi-ship experiments the three ships move independently of each other. Fur-
ther, unlike in multi-target tracking, we assume that the observations are not unordered,
i.e., we do not consider here the ambiguity of the assignment of observations to the objects.
Formally, if y1, y2, y3 are the observed angles, θ1,θ2 and θ3 are the angles corresponding to
the positions of ships one, two and three then

r3(y1, y2, y3|θ1, θ2, θ3) = r(y1|θ1)r(y2|θ2)r(y3|θ3).

It should be clear that this model is limited in the sense that in many cases one would never
know the correspondence between the observations and objects. In fact, the major source of
difficulty for real-world multi-target tracking lies in resolving this ambiguity. However, our
focus here are the scaling properties of the algorithms as a function of the dimensionality
of the system and for this purpose the above problem is a just good enough. We leave it
for the next chapter to extend it to more realistic multi-object tracking problems.

The Choice of the Proposal for LIS

We first discuss the choice of the proposal qx,y for the single ship tracking task. The idea
underlying the design is that the observation is simple: the predicted particle positions
should be adjusted to fit closely the observed angles as the angular measurements are
reliable. The actual choice of the importance function qx,y is a Gaussian with one of its
axes parallel to the observation angle. The mean of qx,y was set to the particle’s position
projected to the observation angle line. To be more exact qx,y is a Gaussian with mean
(x1 cos2(y) + x3 sin2(y)), where y is the observed angle, whilst the covariance is set to
UΛUT with

U =

(
cos(y) − sin(y)
sin(y) cos(y)

)
and

Λ =

(
κσ2 0
0 σ2

)
.

Here κ > 0 is a design parameter defining the ratio of the variance along the axis parallel to
the observed angle to the variance along the orthogonal axis. Its value is chosen arbitrarily
to be 100. A reasonable value for σ2, the variance along the orthogonal axis, is the value
that makes the Gaussian fit the Wrapped Cauchy observation density the best. We used
this value in our experiments.

As U is independent of the particles’ positions, U can be pre-computed at the beginning
of the sampling steps, leaving only the calculation of the Gaussians’ means in the body
of the loop. The window function g is defined as a zero-mean Gaussian with covariance
matrix

C =

(
δg 0
0 δg

)
.
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It is easy to see that these choices enable us to use the Gaussian-mixture LIS (cf. Fig-
ure 4.17).

We must remark that the proposal function and the window function as defined above
depend only on the position of the ship. Hence, when a particle’s state is adjusted in
the second sampling step, its velocity component must be appropriately adjusted (in a
deterministic manner).

Results for Single Ship Tracking

In the rest of this section we compare these filters in a qualitative manner. The tracking
error defined as the Euclidean distance between the mean predicted and the actual ship
positions was used as the basis of the measurements. Measurements were made along
trajectories of length 10, following the literature. The tracking errors were measured with
10 independent state-observation sequences, whilst keeping the initial position fixed. Unless
otherwise noted, each result is the average of 100 runs for these 10 sequences.

The simplest way to compare particle filters is by their tracking error whilst the number
of particles is kept the same. Figure 4.18 shows such results as a function of time steps.
Here the number of particles is kept at 100 for all algorithms. As expected, AVPF performs
better than the baseline Bootstrap Filter. LIS improves upon the performance of both the
Bootstrap Filter and AVPF quite significantly.

In order to develop an understanding of what these performance differences mean, we
present ‘particle clouds’ generated by the three algorithms for an arbitrary selected time-
step in Figure 4.19. It should be clear from the figure that the particle set generated by
LIS is much better concentrated along the lines pointing towards the true state than the
sets generated by both AVPF and the Bootstrap Filter. Literally, LIS makes a better use
of the available information. Moreover, the particle sets generated by AVPF are more
concentrated around the true state than those generated by the Bootstrap Filter. We note
that a straightforwardly implemented likelihood sampling algorithm would perform much
weaker than any of these algorithms as it would have no clue about the distance of the
ship, and thus it would need to distribute samples evenly along the measurement lines.

The running time of all the considered algorithms scales linearly with the number of
particles. Hence in real-time applications where the per iteration time is limited, the
running time will limit the number of particles that can be used. Since the per particle
cost of the algorithms is different, the slower algorithms’ performance will suffer more
from real-time constraints. Comparing the computational cost of algorithms is not easy.
Here we provide both a detailed analysis of the per particle computations for each of
the algorithms, as well as the results of some empirical results. Table 4.2 shows a detailed
account for the various elementary computational steps for the algorithms considered. This
table can serve as the basis of predicting the running times of the various algorithms. For
example, in computer vision applications the evaluation of the observation density is the
far most expensive step as it involves calling the actual image processing routines. In other
applications (like the one considered here) the various steps have roughly the same cost.
In such a case, LIS with N particles can be expected to be cheaper to execute than the
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Bootstrap Filter with M particles or AVPF with K particles if 3.5N < M , and respectively,
1.75N < K. The next table (Table 4.3) shows the actual measured running times of the

BPF AVPF LIS IS
Sampling from 1 2 1 0
the dynamics
Evaluating the 1 2 1 1
obs. density
Evaluating the 0 0 2 1
dyn. density
Sampling from 0 0 1 1
the proposal
Proposal Density 0 0 1 1
Evaluation
Preprocessing 0 0 1 0

Table 4.2: Per-particle computation steps of the Bootstrap Filter (BPF), AVPF, LIS and Im-
portance Sampling(IS). Preprocessing for LIS is the calculation of the means of two Gaussians.
This boils down to computing two matrix-vector products, implementable with 8 multiplications.

algorithms.4 The codes of the three algorithms were written in C++ and all of them have
reasonable implementations. No special effort was made, except those already mentioned,
to optimize the codes of the algorithms. The table shows both the total CPU time when
the number of particles is the same for all the three algorithms and the total CPU time
when the particle numbers are set so that the errors of the algorithms are roughly equal
(see Figure 4.20). Given this table, we may conclude that LIS is roughly 12.5 times slower

BPF AVPF LIS
CPU time
with 10000 122ms 590ms 1523ms
particles
CPU time
with 36.6ms 29.5ms 15.2ms
equal error N=3000 N=500 N=100

Table 4.3: Measured running times of the Bootstrap Filter (BPF), AVPF and LIS with equal
particle numbers and equal errors (N is the number of particles)

than the Bootstrap Filter and is roughly 2.6 times slower than AVPF, thus the theoretical
predictions are off by a factor of 3.6 and 1.5, respectively. Despite this when the tracking

4The machine used was a Mobile Intel Celeron 2.5GHz with 256 MB RAM
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errors are kept equal we get that LIS is the winner (in terms of execution time), followed
by AVPF and the Bootstrap Filter.

Figure 4.21 shows the tracking error and the deviations of the errors of the three
algorithms in the 10th time step for a number of sample sizes. As expected, the error
decays (although not very rapidly) as the number of particles is increased for all the three
algorithms. Interestingly, LIS keeps a considerable margin over the other algorithms over
the range investigated, though its gain, by the nature of the problem studied, decreases
when the number of particles is increased.

In the above experiments the standard deviation of the window function σg was set
to 0.0005 and the ratio parameter κ of the proposal was set to 100. In order to test the
sensitivity of LIS to these parameters we experimented with a number of values for these
parameters. First, the window parameter was changed. This resulted in no significant
changes in the performance as long as the parameter was kept in a reasonable range. It
should be clear, however, that if the window size is too small then LIS degrades to the
Bootstrap Filter. As remarked earlier, smaller values of κ, the parameter that governs
how much we trust in the predicted distance of the ship, were found to yield to enhance
performance. As κ and the window size both grow to infinity the algorithm degrades to
likelihood sampling.

Results for Tracking Multiple Ships

Several real-world tasks require tracking of objects in high-dimensional spaces. It is well-
known that the Bootstrap Filter suffers from an exponential breakdown as the dimen-
sionality of the state space is increased. This holds even when the state variables evolve
independently of each other. In this section we study the performance of the algorithms for
the simplified multi-object tracking problem that was described earlier. Formally, for sim-
plicity we assume that the observation likelihood for the observations Y1, . . . , YM (assuming
M ships) is of the product form:5

r(Y1, . . . , YM |θ1, . . . , θM) =
M∏

k=1

r(Yk|θk).

Clearly, when M ships are tracked, the dimension of the state becomes 4M . In reporting
the errors the Euclidean distance of the mean predicted and actual positions is divided by
the number of ships tracked, so as to allow a meaningful comparison of results obtained
with differing ship-numbers. Exploiting the simple structure of the problem, the proposal
of LIS is chosen to take a product form, just like the window functions.

In the first set of experiments 3 ships were tracked, resulting in a state-space of dimen-
sion 12. Figure 4.22 shows the tracking errors of the algorithms as a function of time. These
results were obtained with 10 tracking sequences and 100 runs for each sequences. Com-
pared with Figure 4.18, we observe that the advantage of LIS against the other algorithms
increases considerably.

5Of course, this assumes that correspondence between the observations and the ships has been resolved.
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In order to gain further insight into the relative efficiency of these algorithms we present
results for the equal CPU time case, as well. Table 4.4 serves as the basis for computing
the respective particle numbers. We note that as compared with the results for tracking
a single ship, the execution times for the Bootstrap Filter and AVPF are doubled only,
whilst that for LIS are tripled. The better than expected execution times for the Bootstrap
Filter and AVPF are a bit of surprising. We conjecture that some low-level mechanisms
(caching, loop unrolling) might have caused this differences. Based on these results, the

BPF AVPF LIS
CPU time
with 10000 245ms 796ms 4597ms
particles
CPU time
with 245ms 238ms 4.6ms
equal error N=10000 N=3000 N=10

Table 4.4: Measured running times of the Bootstrap Filter (BPF), AVPF and LIS with equal
particle numbers and equal errors for tracking 3 ships (N is the number of particles)

number of particles in the subsequent experiments was set to 10, 50 and 100, respectively.
Figure 4.23 shows the resulting tracking errors as a function of time steps. LIS again
clearly performs better than the other algorithms, despite that it uses 10 particles only.
Figures 4.24–4.26 plot the particle clouds for the three algorithms. Note that on these
figures a single particle is represented by 3 points. We also remark that the horizontal and
vertical scales are different in these figures. This creates the (wrong) impression that the
estimated posterior’s variance in the horizontal direction for both the Bootstrap Filter and
AVPF were larger than the variance in the vertical direction.

Figures 4.27–4.29 show the sample paths of the ships together with the mean predicted
positions for a given sequence. In these plots the number of particles are 1000 for the
Bootstrap Filter, 200 for AVPF and 10 for LIS. Visual inspection reveals that LIS indeed
makes a better use of the available information in the observations. In fact, the figures
show that the error of tracking of the second ship becomes overly large for the Bootstrap
Filter, whilst for AVPF the error becomes somewhat large both for the second and the first
ship. Although the tracking error towards the last steps increases for ship 2 for LIS, LIS’s
errors are still much smaller than those obtained for the other algorithms for all ships and
almost all time steps.

For the sake of completeness, the average tracking error with the corresponding standard
deviations are plotted in Figure 4.30 as a function of the number of particles. The figure
confirms that tracking errors decrease with increasing the number of particles. Again, LIS
is able to keep its margin over the range investigated.

Figure 4.31 compares the tracking error and its standard deviation for LIS and the
Bootstrap Filter when the number of objects to be tracked is increased from 2 to 20. As
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noted before, the Euclidean distance is normalized by the number of ships so as to allow a
meaningful comparison between results of tracking when the object numbers are different.6

In these experiments the ships’ initial positions were set systematically with equal spacings
along a circle with a fixed radius and setting the initial velocity direction to the tangent
of the circle at the initial point. We remark that when the number of ships is 20, the
state-space is 80 dimensional.

In these experiments only the Bootstrap Filter and LIS were compared. As it can
be observed from the figure, the performance of the Bootstrap Filter degrades as the
dimensionality is increased, whilst the performance of LIS stays steady. The degradation
of the performance of the Bootstrap Filter is not as severe as one would expect due to the
smoothness of the dynamics of the system (for less smooth systems the error might blow
up exponentially).7 We think that it is quite encouraging that the tracking error of LIS is
not effected by the increased dimensionality, raising the hope that LIS could be used as a
basis of efficient particle filters that are able to track very high-dimensional systems with
a fairly high precision.

6This normalization causes the decrease of the standard deviations.
7In fact, we suspect that the errors at N = 20 are very close to the error level that can be obtained by

pure prediction given the initial state and not taking into account the observations.
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Initialize a sample set
[
(Z

(k)
0 , 1/N)

]N
k=1

according to the prior p0(·).
For t = 1, 2, . . .

Resample from
[
(Z

(j)
t−1, w

(j)
t−1)
]N

j=1
if needed, to obtain

[
(Z

(j)
t−1

′
, 1/N)

]N
j=1

.

For k = 1, 2, . . . , N

Predict X
(k)
t by drawing a sample from K(·|Zk

t−1
′
). Let u = (X

(k)
t , Y ).

Calculate the Gauss-mixture parameters of qu(·)g(X(k) = ·)

Cu,i = (Σ−1
u,i + Σ−1

g )−1, νu,i = Cu,iΣ
−1
g x + Cu,iΣ

−1
u,iµu,i

Lu,i = pu,i
e−1/2(µu,i−x)T Σ−1

u,iCu,iΣ
−1
g (µu,i−x)

((2π)N |Σu,i||Σg|/|Cu,i|)1/2

Draw an index k from {Lu,i/Lu}n
i=1.

Draw Zj from a Gaussian with mean νu,k and covariance Cu,k.

Update the weight w
(k)
t using

ŵ
(k)
t =

(
n∑

i=1

Lu,i

)
f(Zj)

qu(Zj)

K(Zj|X)

K(Xj|X)
.

EndFor

Normalize the weights using

w
(k)
t :=

ŵ
(k)
t∑N

j=1 ŵ
(j)
t

.

EndFor

Figure 4.17: Local Importance Sampling with mixture of Gaussians proposals and Gaussian
window function (qx,y(z) is defined by (4.5), and g(z) is defined by (4.6))
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Figure 4.18: Tracking errors of the Bootstrap Filter, AVPF and LIS as a function of time. In
these experiments the number of particles was kept fixed at the same value (here 100).

Figure 4.19: Particle clouds generated by AVPF (’blue �’), the Bootstrap Filter (’green ×’) and
LIS (’purple 4’) for an arbitrary selected time step.
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Figure 4.20: Tracking errors of the Bootstrap Filter, AVPF and LIS as a function of time. The
particle sizes are set such that the errors are roughly equal. It can be seen from the figure that
the performance of all three algorithms is the same uniformly in time.

Figure 4.21: Tracking errors of the Bootstrap Filter, AVPF and LIS and the deviation of the
error as a function of the number of particles
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Figure 4.22: The average tracking error of the Bootstrap Filter, AVPF and LIS on the multi-
object tracking problem with 10 particles

Figure 4.23: Average tracking error for the Bootstrap Filter, AVPF and LIS when tracking 3
ships. The number of particles are set to 100, 50 and 10, respectively so as to ensure that the
algorithms’ running times are the same.
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Figure 4.24: Illustration of the posterior representation of the Bootstrap Filter when 3 ships are
tracked simultaneously. The number of particles is 100. The ships’ positions are represented by
larger circles. The figure also shows the straight lines connecting the observer’s position with
positions of the ships.

Figure 4.25: Illustration of the posterior representation of AVPF when 3 ships are tracked
simultaneously. The number of particles is 50.
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Figure 4.26: Illustration of the posterior representation of LIS when 3 ships are tracked simul-
taneously. The number of particles is 10.

Figure 4.27: The ships’ trajectories and the corresponding mean predicted positions of the 3
ships for the Bootstrap Filter with 1000 particles
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Figure 4.28: The ships’ trajectories and the corresponding mean predicted positions of the 3
ships for AVPF with 200 particles

Figure 4.29: The ships’ trajectories and the corresponding mean predicted positions of the 3
ships for LIS with 10 particles
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Figure 4.30: Tracking errors of the Bootstrap Filter, AVPF and LIS and the deviation of the
error with different particle sizes when tracking 3 ships

Figure 4.31: Tracking error for time step 10, as a function of the number of ships to be tracked
for the Bootstrap Filter and LIS. Both algorithms use the same number of particles. The statistics
is obtained by running 100 experiments for 10 independent realizations.



Chapter 5

Summary

In this Thesis particle filtering algorithms were studied from the point of view of generating
good particle representations of the posterior. The key observation is that the positions
of the particles play a crucial role in the quality of the estimates. This implies that the
particles should be positioned using as much of the available information as possible. In
particular, both the dynamical prediction density and the observation likelihood function
should be taken into account when positioning the particles. In fact there are very few
algorithms in the literature that make a good use of both models at this stage. In this
Thesis three families of algorithms are suggested and analyzed that subscribe to this idea.
These algorithms are the main contributions in this Thesis. They are designed to work
in different situations. These situations together with the proposed algorithms can be
summarized as follows:

Thesis 1: History Sampling for SIR (Section 3.2). Importance sampling is an
efficient design tool in constructing Monte Carlo methods. In theory, an importance
function could be designed using both the dynamical and observation model. How-
ever, it is commonly designed using the last observation only. As a result regular
importance sampling algorithms will fail to generate good particle representations,
since the dynamics has no effect on the particle locations. I proposed a family of
algorithms that take into account the dynamics by sampling those “history” com-
ponents of the state that are not defined by the importance function. I argued for
the correctness of this new algorithms and have shown its efficiency in a series of
experiments.

Thesis 2: Local Likelihood Sampling (Section 4.4). The Bootstrap Filter is
very inefficient in case of reliable observations, i.e., when the observation likelihood
function is peaky around its modes. Then, unless the number of particles is enormous,
the Bootstrap Filter fails to develop a good representation of the posterior. This
is because its prediction step will fail to allocate particles in the close vicinity of
the modes. I proposed the Local Likelihood Sampling scheme that suggests a local
perturbation step based on the observation likelihood in the vicinity of the position
predicted by the dynamical model to overcome this problem. I have showed that the
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sampling scheme is unbiased. A theoretical analysis was developed to show LLS’s
efficiency as compared to that of the Bootstrap Filter.

Thesis 3: Local Importance Sampling (Section 4.5). I proposed an algorithm
that represents a practical variant of the Local Likelihood Sampling particle filter.
The suggested method does not require one to perform the local perturbation exactly
according to the likelihood function. Instead any approximation of the likelihood can
be used. I have showed that the algorithm is unbiased. Furthermore, I proposed an
efficient version of this method that can be used when the local proposal that ap-
proximates the likelihood is Gaussian. Experiments with a real-world visual tracking
problem and on a difficult simulated tracking problem show the improved tracking
efficiency of the new algorithm.



Appendix A

Low Variance Resampling Methods

As it was discussed in Section 2.5, basic resampling (also known as multinomial resampling)
causes a fast degeneration of the particle representation. Degeneration follows from the
variance increase of the posterior representation. Here the corresponding theorem will be
proved, followed by the discussion of some alternative resampling techniques that have
lower variance. A nice summary on the topic is [33].

A.1 Degradation of Multinomial Resampling

Proposition A.1.1. Let N be the number of particles with equal weights (1/N). Assume
that not all the particles are unique, but we only have m distinct ones. Denote the weights
of the m distinct particles by W 0

1 , W 0
2 , . . . ,W 0

m (
∑m

i=1 W 0
i = 1, W 0

i ≥ 0). Assume that we
resample the particle set with multinomial resamplings for a couple of times in a recur-
sive fashion. Let Wi = (W i

1, W
i
2, . . . ,W

i
m)T be the weights of the particles after the i-th

resampling step. Let Tn be the time of reaching a completely degenerated particle set, i.e.:
TN = inf{k|

∑N
j=1 W k

j (1−W i
j ) = 0}. Then:

E [TN ] ≤ 2N log 2N

Proof. Let us first calculate Ri = E
[∑N

j=1 W i+1
j (1−W i+1

j )|Wi

]

Ri =
N∑

j=1

E
[
W i+1

j |W i
]
− E

[
(W i+1

j )2|W i
]

=

=
N∑

j=1

E
[
W i+1

j |W i
]
−
(
Var(W i+1

j |W i)− E(W i+1
j |W i)2

)

Using the well known formula for the expected value and the variance of the binomial
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distribution, we get

Ri =
N∑

j=1

W i
j −

1

N2
NW i

j (1−W i
j )− (W i

j )
2 =

N − 1

N

N∑
j=1

W i
j (1−W i

j ).

Hence E[Ri|W i−1
j ] = N−1

N
E[Ri−1|W i−1

j ] and thus

E

[
N∑

j=1

W i
j (1−W i

j )

]
=

(
N − 1

N

)i N∑
j=1

W 0
j (1−W 0

j ).

Observe that TN > k if and only if
∑N

j=1 W k
j (1 − W k

j ) ≥ 2
N

(
1− 1

N

)
, as this is the

smallest possible non-zero value of the expression. Using Markov’s inequality:

P(TN > k) = P

(
N∑

j=1

W k
j (1−W k

j ) ≥ 2
N − 1

N2

)
≤ N2

N − 1
E(

N∑
j=1

W k
j (1−W k

j )) =

= 2

(
N − 1

N

)k
N2

N − 1

N∑
j=1

W 0
j (1−W 0

j ). (A.1)

Let q = N−1
N

and c = 2 N2

N−1

∑N
j=1 W 0

j (1−W 0
j ). Hence P(Tn > k) ≤ cqk. Note that the

estimate of (A.1) is very loose as long as cqk > 1, i.e. when k < k0 = log 1
q
c.

We are ready to estimate the expected degradation time:

ETN =
∞∑

k=0

P (TN > k) ≤ k0 +
1

1− q
.

Now note that log 1
q

= − log N−1
N

≥ 1
N

to get

ETN ≤ N + 2N log

(
N

N∑
j=1

W 0
j (1−W 0

j )

)
≤ 2N log 2N,

which finishes the proof.

A.2 Residual Resampling

The process of resampling can be viewed as generating duplication numbers (the number of
times a particle is repeated in the new resampled set) of the original particles in exchange
of omitting the weights (see Section 2.5.1). In our first alternative resampling scheme,
called residual resampling, the duplication numbers are set as a sum of a deterministic and
a stochastic component:

N i = bNw(i)c+ Ŵ i.
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Here Ŵ i is drawn from the multinomial density defined as Mult(N−R; ŵ(1), ŵ(2), . . . , ŵ(N)),

with R =
∑N

i=1bNw(i)c and ŵ(i) = Nw(i)−bNw(i)c
N−R

. Here w(1), . . . , w(N) are the original

weights (w(i) ≥ 0,
∑N

i=1 w(i) = 1). This algorithm sets a large amount of the new particles
deterministically, which is decreasing the variance of the resampling.

A.3 Stratified Resampling

Let us define the cumulative distribution of particle weights. Let w(1), w(2), . . . , w(N) be a
normalized set of particle weights. Define

Ck =
k∑

j=1

w(j).

Note that CN = 1. It is easy the see that a set of numbers {Ui}N
i=1 in the (0, 1] interval

define a resampling method when the indexes of the i-th particle index in the resampled
set will be: argminkUi ≤ Ck.

With this definition Multinomial-resampling can be described as sampling all Ui from
the uniform distribution in the (0, 1] interval, i.e., Ui ∼ U(0, 1]. This is in fact the most
common description of Multinomial resampling in the Monte-Carlo books (see, e.g., [39]).

In case of stratified resampling Ui each is drawn from uniform distribution on the
( i−1

N
, i

N
] interval, i.e., Ui ∼ U( i−1

N
, i

N
]. This method, again, reduces the variance of resam-

pling by introducing some restrictions on the generated indexes.

A.4 Systematic Resampling

Systematic resampling is similar to stratified resampling with the only difference that ui

is defined using only one random sample U drawn from U(0, 1
N

]. Then

Ui =
i− 1

N
+ U.

This algorithm is the most preferred one in the literature, because of its computational
simplicity and good empirical performance. Unfortunately the resulting particle positions
are no longer independent, which make the theoretical analysis of these algorithms more
challenging. This method is an instance of the generic Monte-Carlo technique called the
method of “Common Random Numbers” [12].
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Appendix B

Auxiliary Variable Method

The Auxiliary Variable Method (AVM) was introduced by Pitt and Shephard in [31]. The
motivation is to decrease the degeneration occurring in particle filtering caused by the
curse of reliable observations. In the followings we will follow the description of [10].

Observe that given particle representation St−1 = {(X(i)
t−1, w

(i)
t−1)}N

i=1 of p(Xt−1|Y0:t−1),
the best estimate of the posterior at time t is:

p(Xt = ·|Y0:t) ≈ p(Xt = ·|Yt, St−1) ∝ r(Yt|Xt = ·)
N∑

i=1

w
(i)
t−1K(Xt = ·|Xt−1 = X

(i)
t−1). (B.1)

Hence the task of particle filtering is to sample from this density. The trick in AVM is to
perform particle filtering first in a higher dimension, to represent the joint density

p(Xt = ·, k|Yt, St−1) ∝ r(Yt|Xt = ·)w(k)
t−1K(Xt = ·|Xt−1 = X

(k)
t−1) k = 1, . . . , N,

and then marginalize this by discarding the index k to get a sample from the empirical
filtering density (B.1). The index k is called an auxiliary variable, for obvious reasons.

Note that this very general idea can be combined with several other particle filters. For
example combining it with importance sampling would be to sample (X

(j)
t , k(j)) pairs from

π(Xt, k|Y0:t) and calculate weights wj = r(Yt|X(j)
t )w

(k(j))
t−1 K(X

(j)
t |X(k(j))

t−1 )/π(Xt, k
(j)|Y0:t).

The Auxiliary Variable Method [31] is generally used with the following generic pro-
posal:

π(Xt, k|Y0:t) ∝ r(Yt|µ(k)
t )w

(k)
t−1K(Xt|X(k)

t−1),

which is thought to be a good approximation of p(Xt, k|Yt, St−1). Here µ
(k)
t is the mean,

the mode, or a sample from K(Xt = ·|X(k)
t−1). Note that given this density π(k|Y0:t) =∫

π(Xt, k|Y0:t)dXt ∝ r(Yt|µ(k)
t )w

(i)
t−1 holds.

This means that sampling from π(Xt, k|Y0:t) is possible in a three step process, when

after generating the value µ
(k)
t from K(Xt|X(k)

t−1) for each k, a random index K(j) is drawn

from λk ∝ r(Yt|µ(k)
t )w

(k)
t−1. Finally, X

(j)
t is sampled from K(Xt = ·|X(K(j))

t−1 ). The λk-s are
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called the first stage weights. The particle weights are set to

wj =
r(Yt|X(j)

t )

r(Yt|µ(k(j))
t )

.

The idea is that in the first step (when sampling K(j)) the algorithm effectively filters out
those particles which do not have a good chance to produce an “offspring” that survive
(because r(Yt|µ(k)

t ) is low). This can be a big win since if the particles in the new generation
derive from only a few ancestors then the quality of the approximation of the posterior will
be doomed to degrade.

Although this algorithm can be expected to perform much better than the Bootstrap
Filter when the likelihood function is peaky, the algorithm still suffers from the prob-
lem that the observation influences the particles only in an indirect manner. Thus when
the prediction densities K(Xt = ·|X(k)

t−1) are “broad” as compared with the observation
likelihood, the algorithm will still require a large number of particles.

Another disadvantage of the algorithm is that it requires two observation likelihood
evaluations for each particle. Since these steps are the computationally most expensive ones
in visual tracking (since they include expensive image processing calculations) algorithms
that perform less observation evaluations are preferred.

The detailed algorithm is shown in Figure B.1.
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Initialize
[
(X

(k)
0 , 1/N)

]N
k=1

from the prior p0(·).
For t = 1, 2, . . .

Generate the likely values µ
(i)
t from K(Xt|X(i)

t−1). Let λi ∝ w
(i)
t−1r(Yt|µ(i)

t ),
for i = 1, . . . ,M >> N .

For i = 1, 2, . . . , N

Sample auxiliary variable index Ki with p(Ki = j) = λj.

Sample next state X
(i)
t from K(Xt|X(K(i))

t−1 ).

Calculate weights

ŵ
(i)
t =

r(Yt|X(i)
t )

r(Yt|µ(K(i))
t )

.

EndFor

Normalize weights using

w
(j)
t =

ŵ
(j)
t∑N

i=1 ŵ
(i)
t

EndFor

Figure B.1: The Auxiliary Variable Particle Filter algorithm.
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Appendix C

Partitioned Sampling

The strength of particle filters come from the weighted resampling step that helps it to
concentrate the particles to the most relevant part of the state space. When the state of
the object has many components the same idea can be applied to drawing components
in a sequential manner. The resulting algorithm is called partitioned sampling and was
introduced in [23, 24, 22]. The origin of the name is that the components of the state are
“partitioned” with components in separate partitioned sampled at once.

In the followings we will give a slightly more general description of the concept than
e.g. [22]. First we introduce a sequence of auxiliary probability variables Zt,i, i = 1..τ
with Zt,τ = Xt together with some kernel functions Ki(zt,i|zt,i−1, Xt−1) that defines the
transition probabilities between the variables. Furthermore we introduce a series of im-
portance functions πi(zt,i|Yt) whose purpose is to feed information from the observation to
the sample. The key idea of partitioned sampling is to generate the next state Xt through
the auxiliary variables, with resampling after each step, i.e.,

1. For j = 1, . . . , τ

• Generate the next particle set
[
Z

(i)
t,j

]N
i=1

by

Z
(i)
t,j ∼ Kj(zt,j = ·|Z(i)

t,j−1, Xt−1).

• Weight samples by w
(i)
t = πi(Z

(i)
t,j |Yt).

• Do weighted resampling on
[
Z

(i)
t,j

]N
i=1

using w
(i)
t .

2. EndFor

The simple observation that ensures that the above algorithm produces unbiased weighted
sample set from K(Xt|Xt−1) is as follows:

K(Xt|Xt−1) =

∫
Kτ (Xt|zt,τ−1, Xt−1) . . .

∫
K3(zt,3|zt,2, Xt−1) (C.1)∫

K2(zt,2|zt,1, Xt−1)K1(zt,1|Xt−1)dzt,1 . . . dzt,τ−1.
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Until now, we gave the general description of the partitioned sampling algorithm. In
the followings we will discuss the scenarios, in which it is most typically used.

The key idea is to divide the state space into K partitions1 as X = X1× . . .×Xτ and let
Zt,i = (Xt,1:i, Xt−1,i+1:τ ), where Xt,i:j means Xt,i, . . . Xt,j. With this choice the algorithm
can be viewed as one that builds up the next state Xt gradually in several steps, and re-
sampling is used to populate successful state parts. Note that if the importance functions
(πi(zt,i|Yt)) are related to the observation likelihood, then the partitioned sampling algo-
rithm have the appealing characteristic that particle positions are determined using both
the dynamical and the observation model.

Before giving the specific algorithm for this case, we argue that a significant advantage
in memory usage can be achieved if instead of C.1, which holds unconditionally, we use
the following assumption, that may not hold always:

K(Xt|Xt−1) =

∫
Kτ (Xt|zt,τ−1) . . .

∫
K3(zt,3|zt,2) (C.2)∫

K2(zt,2|zt,1)K1(zt,1|Xt−1)dzt,1 . . . dzt,τ−1.

The advantage lies in the fact that one does not have to store the value of Xt−1, but instead
its components can gradually be exchanged by the new components of Xt. The algorithm
that uses this trick is given in Figure C.1.

One example when this latter equation holds comes from multi-target tracking with
objects moving independently. In this case a good state factorization is if each object’s
state is a factor over the joint state space. Target occlusions can also be modeled if a
visibility ordering of the targets can be estimated. In this case the most frontal object
should have the lowest factorization index.

Another example is tracking articulated objects. For example in [25] a hand is tracked
with a four-partition system. In the first partition are the scale, orientation and translation
of the fist, the second partition of variables is the joint angle of the thumb, the third is the
joint angle of the tip of the thumb, and the fourth is the joint angle of the index finger.
Note that the ordering of the partitions plays an important role here.

One problem with Partitioned Sampling is that the sequential weighted resampling
steps causes an impoverishment effect of the particle partitions that are generated earlier
similarly to what happens with particle filters when resampling is used for two many steps
(see AppendixA). For example in hand tracking of [25] the variance in the first subspace
(translation, rotation and scale) might get very low after the weighted resamplings of the
other subspaces. In case of tracking multiple objects, this effect increases with the number
of objects, creating an erratic and undesirable behavior [41].

One solution to overcome particle partition impoverishment is to use Branched Parti-
tioned Sampling [22]. The idea behind this algorithm can be summarized as follows: if

1The word partition, that gives the name of the algorithm, is commonly used in the literature, however
this is strictly speaking a misnomer. A more clear description would be to say that the state space is
factored of K sub-spaces.
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Initialize
[
(X

(k)
0 , 1/N)

]N
k=1

from the prior p0(·).
For t = 1, 2, . . .

For j = 1, . . . , τ

For k = 1, 2, . . . , N

Sample the j-th component of the k-th particle from

X̂
(k)
t,j ∼ Kj(Xt,j = ·|X(k)

t,1:j−1, X
(k)
t−1,j:τ )

Calculate component likelihood

l
(k)
t,j = πj(X

(k)
t,j |X

(k)
t,1:j−1, Yt).

EndFor

Do weighted resampling on
{(

X
(k)
t,1:j−1, X̂

(k)
t,j , X

(k)
t−1,j+1:τ

)
, w

(k)
t,j−1

}N

k=1

with p(Xt,j = X̂
(n)
t,j ) ∝ l

(n)
t,j to get

{(
X

(k)
t,1:j−1, X

(k)
t,j , X

(k)
t−1,j+1:τ

)
, w

(k)
t,j

}N

k=1
.

We used the convention that w
(k)
t,0 = w

(k)
t−1.

EndFor

Calculate likelihoods using ŵ
(k)
t = w

(k)
τ,t r(Yt|X(k)

t ), k = 1, . . . , N .

Normalize weights using

w
(j)
t =

ŵ
(j)
t∑N

i=1 ŵ
(i)
t

EndFor

Figure C.1: The Partitioned Sampling algorithm. Note that if r(Xt = |Yt) =

π1(Xt,1|Yt)π2(Xt,2|Xt,1, Yt) . . . πτ (Xt,τ |Xt,1:τ−1, Yt) holds, then l
(k)
j,t might be reused to cal-

culate the importance weights ŵ
(k)
t .



94 APPENDIX C. PARTITIONED SAMPLING

there are several partition orderings that satisfy Equation C.2, then using these might de-
crease the above mentioned particle impoverishment effect. The rule of thumb here is that
components generated earlier suffer from particle impoverishment. Perturbing the order of
components helps since for each partition there are particles in which they are generated
at the end of the partition process line. The name “Branched” comes from the visual clue
that different particles follow different branches of component sampling. They are joined
together at the weight normalization step.

Note that in case of tracking an articulated body, or multiple targets with occlusion
the partition orderings have to satisfy some constraints, since the algorithm can be used
just on the orderings that satisfy our main assumption. This makes it difficult to avoid
the particle impoverishment completely. As a result the branching idea might be used in
a limited way.

The algorithm is shown in Figure C.2.
We finally note that the method can be combined with other particle filtering methods

such as LLS or LIS.
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Initialize
[
(X

(k)
0 , 1/N)

]N
k=1

from the prior p0(·).
For t = 1, 2, . . .

Acquire partition orderings σ(i) for all particles X
(i)
t−1, i = 1, . . . , N .

Collect particles with the same orderings Hσ = {i|σ(i) = σ}.

For all σ permutations of {1, . . . , τ} when Hσ is non-empty

For j = 1, . . . , τ

For all indexes k in Hσ

Sample the σ(j)-th partition of the k-particle from

X̂
(k)
t,σ(j) ∼ Kσ(j)(Xt,σ(j) = ·|X(k)

t,σ(1):σ(j−1), X
(k)
t−1,σ(j):σ(τ))

Calculate partition likelihood

l
(k)
t,σ(j) = πσ(j)(X

(k)
t,σ(j)|X

(k)
t,σ(1):σ(j−1), Yt).

EndFor

Make weighted resampling on{(
X

(k)
t,σ(1):σ(j−1), X̂

(k)
t,σ(j), X

(k)
t−1,σ(j+1):σ(τ)

)
, w

(k)
t,σ(j−1)

}N

k=1

with p(Xt,σ(j) = X̂
(n)
t,σ(j)) ∝ l

(n)
t,σ(j) to get{(

X
(k)
t,σ(1):σ(j−1), X

(k)
t,σ(j), X

(k)
t−1,σ(j+1):σ(τ)

)
, w

(k)
t,σ(j)

}N

k=1
. We used

the convention that w
(k)
t,σ(0) = w

(k)
t−1.

EndFor

Calculate likelihoods using ŵ
(k)
t = w

(k)
σ(τ),tr(Yt|X(k)

t ), k = 1, . . . , N .

Normalize weights using

w
(j)
t =

ŵ
(j)
t∑N

i=1 ŵ
(i)
t

EndFor

Figure C.2: The Branched Partitioned Sampling algorithm. X
(k)
t,σ(i):σ(j) means

X
(k)
t,σ(i), . . . , X

(k)
t,σ(j).
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Appendix D

Products of Gaussian Densities

Let f1(x) and f2(x) be the density function of two multi-dimensional Gaussians:

f1(x) = ((2π)d|Σ1|)−1/2e−1/2(x−µ1)T Σ−1
1 (x−µ1),

and

f2(x) = ((2π)d|Σ2|)−1/2e−1/2(x−µ2)T Σ−1
2 (x−µ2),

It is well known and immediate from the definition of Gaussians that f1(x)f2(x) is also a
density function of a Gaussian if it is appropriately normalized. The question investigated
here is what the mean, covariance and the normalizing factor of this product Gaussian is.

First we examine the exponent:

A = (x− µ1)
T Σ−1

1 (x− µ1) + (x− µ2)
T Σ−1

2 (x− µ2) =

= xT (Σ−1
1 + Σ−1

2 )x− (µT
1 Σ−1

1 + µT
2 Σ−1

2 )x− xT (Σ−1
1 µ1 + Σ−1

2 µ2)

+µT
1 Σ−1

1 µ1 + µT
2 Σ−1

2 µ2.

Using that (Σ−1)T = Σ−1 as covariance matrixes are symmetric and positive definite,

A = xT (Σ−1
1 + Σ−1

2 )x− 2(µT
1 Σ−1

1 + µT
2 Σ−1

2 )x + µT
1 Σ−1

1 µ1 + µT
2 Σ−1

2 µ2.

Denote the mean and the covariance of the product Gaussian as µ and Σ. From the
second order term of A:

Σ−1 = Σ−1
1 + Σ−1

2 .

From the first order term of A:

µT Σ−1 = µT
1 Σ−1

1 + µT
2 Σ−1

2 .

Hence:

µ = ΣΣ−1
1 µ1 + ΣΣ−1

2 µ2.
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The difference of A and the corresponding part of the product Gaussian is

K = µT
1 Σ−1

1 µ1 + µT
2 Σ−1

2 µ2 − µT Σ−1µ =

= µT
1 Σ−1

1 µ1 + µT
2 Σ−1

2 µ2 − (µT
1 Σ−1

1 Σ + µT
2 Σ−1

2 Σ)Σ−1(ΣΣ−1
1 µ1 + ΣΣ−1

2 µ2) =

= µT
1 Σ−1

1 µ1 + µT
2 Σ−1

2 µ2 − (µT
1 Σ−1

1 + µT
2 Σ−1

2 )Σ(Σ−1
1 µ1 + Σ−1

2 µ2) =

= µT
1 Σ−1

1 µ1 + µT
2 Σ−1

2 µ2 − (µT
1 Σ−1

1 ΣΣ−1
1 µ1 + 2µT

2 Σ−1
2 ΣΣ−1

1 µ1 + µT
2 Σ−1

2 ΣΣ−1
2 µ2) =

= µT
1 Σ−1

1 ΣΣ−1
2 µ1 − 2µT

2 Σ−1
2 ΣΣ−1

1 µ1 + µT
2 Σ−1

2 ΣΣ−1
1 µ2) =

= (µ1 − µ2)
T Σ−1

1 ΣΣ−1
2 (µ1 − µ2)

In summary:

f1(x)f2(x) = ((2π)d|Σ1|)−1/2((2π)d|Σ2|)−1/2e−1/2Ke−1/2(x−µ)T Σ−1(x−µ).

Denote the density function of the product Gaussian by f(x), then:

f1(x)f2(x) = ((2π)d|Σ1|)−1/2((2π)d|Σ2|)−1/2((2π)d|Σ|)1/2e−1/2Kf(x) =

= ((2π)d|Σ1||Σ2|/|Σ|)−1/2e−1/2Kf(x)

Hence the normalizing factor of f1f2 that makes it a density is

((2π)d|Σ1||Σ2|/|Σ|)1/2e1/2K .
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